Norann Subdivision Area Road Reconstruction MOA PM&E Project #20-14

Geotechnical Report

Geotechnical Investigation

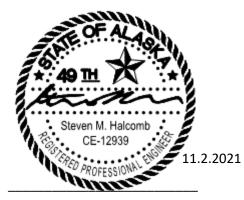
Norann Subdivision Area Road Reconstruction

(MOA PM&E Project No. 20-14)

November 2021

Contact Steven Halcomb, PE, GE, DGE shalcomb@crweng.com

3940 Arctic Blvd., Suite 300 Anchorage, AK 99503 p (907) 562.3252 | f (907) 561.2273


Geotechnical Investigation Norann Subdivision Area Road Reconstruction (MOA PM&E Project No. 20-14)

Submitted To:

Nichole Rehm, PE Project Manager PTS, Inc. on behalf of Municipality of Anchorage Project Management & Engineering Department 4700 Elmore Road Anchorage, AK 99507

Submitted By:

CRW Engineering Group, LLC 3940 Arctic Blvd., Suite 300 Anchorage, AK 99503 (907) 562-3252 www.crweng.com

Steven Halcomb, PE, GE, D.GE Senior Geotechnical Engineer

Ali Sacks, PE Geotechnical Engineer

November 2021 CRW Project Number 10149.00

Table of Contents

1.	Introduction and Project Description	1
2.	Existing Conditions	2
3.	Subsurface Investigation	
3.1	Subsurface Drilling	3
3.2	Sample Collection	3
3.3	Borehole Completion and Piezometer Well Installation	3
3.4	Groundwater Monitoring	4
3.5	PID Field Testing	4
3.6	Contaminated Soils Disposal	4
4.	Laboratory Testing and Results	5
5.	Historical Geotechnical Investigations	6
5.1	Cope Street	6
5.2	Arctic Boulevard	6
6.	Site Conditions	7
6 .1	Geology	
6.2	Pavement Thickness and General Soil Lithology	
6.3	Groundwater Conditions	
6.4	PID Field Testing Results	
6.5	Contaminated Site Review	
7.	Geotechnical Engineering Recommendations	٥
7. 1	Site Preparation	
7.2	Utility Excavation	
7.3	Dewatering	
7.4	Frost Depth and Permafrost	
7.5	Recommended Road Structural Sections	
	.5.1 Recommended Structural Section – Limited Subgrade Frost Protection Method	
7.6	Compaction Requirements	
7.7	Rigid Insulation.	
7.8	Geotextiles	
7.9	Subdrains	12
7.10) Reuse of Material	12
7.11	L Utility Recommendations	12
8.	Limitations and Closure	13
9.	References	14

Page | i

Tables

Table 4-1. Laboratory Analyses and Methods	5
Table 6-1. Summary of Groundwater Levels	8
Table 7-1. Recommended Structural Section – 2 inches Insulation	11

Page | ii

Figures

- Figure 1 Vicinity Map
- Figure 2 Borehole Location Map
- Figure 3 Typical Insulated Section without Edge Subdrains

Appendices

Appendix A – Borehole Logs

Appendix B – Laboratory Results

Appendix C – Site Investigation Photos

- Appendix D Historic Geotechnical Data
- Appendix E BERG2 Thermal Analysis Output

1. Introduction and Project Description

CRW Engineering Group, LLC (CRW) is pleased to present this geotechnical investigation and design recommendations report to support the upgrades to West 57th Avenue (57th Avenue) and West 58th Avenue (58th Avenue) from Cope Street to Arctic Boulevard and Cope Street from 57th to 58th Avenue in Anchorage, Alaska. A vicinity map is shown in Figure 1.

The project is being managed by the Municipality of Anchorage (MOA) Project Management & Engineering Department (PM&E) and has been assigned MOA PM&E project number 20-14. Improvements are expected to include a new roadway structural section, pavement, drainage improvements, curb and gutter, pedestrian facilities (if warranted), and street lights.

The scope of geotechnical work included:

- Reviewing historical geotechnical investigations within and near the project area.
- Performing a geotechnical field investigation which included advancing boreholes along the project alignment and soil sampling.
- Installing three piezometer wells for groundwater level monitoring.
- Overseeing index laboratory testing of recovered soil samples including moisture content, grain size distribution including hydrometer, and Atterberg Limits.
- Analyzing field observations and testing results.
- Preparing the geotechnical report to provide design recommendations for the project.

2. Existing Conditions

The project area is the Norann Subdivision and is a local neighborhood situated west of Arctic Boulevard, south of West International Airport Road and north of Dowling Road (Figure 1). The existing streets are two-lane roadway surfaces with curb and gutter along 57th and 58th Avenue but not along Cope Street. There are currently no sidewalks along any of the project streets. The street pavements show significant distresses including cracking, settling, heaving, and rolled curb and gutters along 57th and 58th Avenue.

Storm and meltwater is currently conveyed along the surface though much of the roadway grade is generally flat resulting in ponding water.

3. Subsurface Investigation

CRW's geotechnical investigation consisted of drilling and sampling six boreholes (BH-01 through BH-06) on May 11^{th} , 2021 at the locations shown in Figure 2. Borehole locations were selected by CRW following the guidelines presented in the 2007 MOA PM&E Design Criteria Manual (DCM) Section 1.7 – Soil Investigation Standards. The soil boring locations were approved by PM&E prior to performing the field investigations.

Initial boring locations were submitted to local utilities for gaining acceptable clearance from their facilities and were adjusted for traffic safety and utility proximity prior to drilling. Select site investigation photographs can be found in Appendix C.

3.1 Subsurface Drilling

Drilling services were provided by Discovery Drilling Inc. (Discovery) of Anchorage, Alaska, using a truckmounted CME-75 drill rig equipped with a nominal 8-inch outer diameter (O.D.) hollow-stem auger. When drilling through the asphalt pavement, an approximately 12-inch diameter hole was cut in the pavement with a saw tooth bit prior to advancing the borehole.

Traffic control was performed in accordance with the requirements of the MOA approved traffic control plan.

A CRW engineer supervised the field investigation program, recovered soil samples, and managed field operations. All borings were advanced to a depth of 17 feet below ground surface (BGS).

3.2 Sample Collection

Soil samples were obtained by advancing an oversized split-spoon sampler into the soil beyond the bottom of the auger or by collecting cuttings from the auger. Samples were collected using a 3-inch O.D. split-spoon sampler as a modified Standard Penetration Test (SPT). The sampler was advanced 24 inches, counted in 6-inch intervals, using a 340-pound automatic hammer. The number of blows required to drive the sampler each 6-inch interval is reported on the borehole logs in Appendix A. The blow counts shown on the borehole logs are field values that have not been corrected for overburden, sampler size, hammer energy, rod length, or other factors.

Split-spoon samples were collected at approximately 2.5-foot intervals in the first 10 feet and every 5 feet thereafter. Recovered samples were visually classified in the field before being individually sealed in double plastic bags and transported to the soils laboratory for additional testing. Field visual classifications were verified through laboratory testing. Soil characteristics, such as classification, consistency, moisture, and color were noted for each sample recovered. Classification was performed following the Unified Soil Classification System (USCS) according to ASTM D2487/D2488. Frost classifications of the soil were described according to the MOA DCM standards.

3.3 Borehole Completion and Piezometer Well Installation

All boreholes were backfilled with cuttings brought to the ground surface during drilling. In select borings (BH-01, BH-03, and BH-05), a 1-inch PVC piezometer well was installed for groundwater level monitoring. The PVC pipe was hand-slotted the last 10 feet and was installed over the length of each boring. After the piezometer was installed, the annular space around the PVC was backfilled with cuttings. A 7-inch flush mount cover was installed at the surface with the annulus filled with pea gravel. A cold patch asphalt was placed around the flush mount to match the existing pavement surface where required. If no piezometer

well was installed, the boring was backfilled with cuttings and a cold patch asphalt was placed at the surface to match the existing pavement where required. For BH-06, no piezometer was installed and the surface was left as gravel.

Evidence of ground movement at BH-05 was observed when groundwater level readings were collected after drilling. The ground had subsided around the monument and left the casing protruding above the lip of the monument. The casing was cut down so the monument lid could be closed. The monument was replaced in September 2021 and the ground brought back to level to minimize the effect on traffic.

3.4 Groundwater Monitoring

Groundwater levels were noted during drilling. Additional groundwater level measurements occurred approximately two weeks after completion of drilling, and again in late August and late September. Groundwater levels observed during drilling and measurements after drilling are presented on the borehole logs, in Appendix A, and in this report in Table 6-1.

3.5 PID Field Testing

Soil samples were tested with a Photo Ionization Detector (PID) to test for the presence of volatile organic compounds (VOC) after being placed into a polyurethane bags during sampling. The PID was calibrated at the beginning of each field day with 100-parts per million (ppm) isobutylene calibration gas. The PID used was equipped with a 10.2-eV lamp. Screening was performed between 15 and 60 minutes after the sample was placed in the bag. Prior to screening, each sample was shaken or agitated for 15 seconds to assist volatilization. After vapor development, the PID sampling probe was inserted to about one-half the headspace depth and the highest measurement was recorded. Care was taken when inserting the sampling probe into the bag to avoid uptake of any moisture or soil particles. The field PID readings are presented on the borehole logs in Appendix A.

3.6 Contaminated Soils Disposal

All cuttings from BH-06 with a petroleum odor were disposed of at the borehole location. No other evidence of contamination was observed at any other boreholes.

4. Laboratory Testing and Results

Soil laboratory tests to evaluate index properties of recovered samples were performed by the Alaska Testlab (ATL) in their Anchorage facility. The laboratory testing program consisted of soil index tests to determine the water content, grain-size distribution including hydrometer, No. 200 Wash, and Atterberg Limits.

The laboratory tests were performed in accordance with the test methods of ASTM International as summarized in Table 4-1.

Table 4-1. Laboratory Analyses and Methods

Analysis	Method	Number of Samples
Water Content	ASTM D2216	50
Grain-size Distribution	ASTM D6913	8
	ASTM D422	6
Limited Mechanical Analysis	ASTM D1140	10
Atterberg Limits	ASTM D4318	4

Results of the laboratory testing are presented in Appendix B and are included on the borehole logs in Appendix A.

5. Historical Geotechnical Investigations

CRW consulted the on-line MOA Soil Boring map to evaluate historic borings in the project area. No historic borings were noted to have been completed along 57th and 58th Avenue. One boring along Cope Street and two borings along Arctic Boulevard were reviewed. A brief discussion of the historic investigation and their findings are below. Historical logs and locations are included in Appendix D.

5.1 Cope Street

A geotechnical investigation was completed by R&M Consultants, Inc. (R&M) in 1974. The MOA on-line Soil Boring map indicates a boring at the corner of Cope Street and 57th Avenue; we do note that the R&M borehole map has mislabeled 57th Avenue.

The closest R&M boring encountered a 1-foot layer of gravelly sand with silt overlaying silty sand, silt with sand, and sand with silt to a total depth of 10 feet.

No groundwater was observed.

5.2 Arctic Boulevard

Two borings along Arctic Boulevard, at the intersections of 57th and 58th Avenues, were completed by the MOA Department of Public Works Construction Division in 1980.

Materials encountered consisted generally of a 2- to 3-foot layer of well graded gravel with sand and silt. Underlying the gravel was peat which ranged from 3.5 to 6 feet in thickness. Below the peat was silt or silty sand which extended to the depth of the borings to 10 feet.

No groundwater was observed.

6. Site Conditions

6.1 Geology

The geology for the project area was determined from the Simplified Geologic Map of Central and East Anchorage, Alaska, as mapped by R.A. Combellick with the Alaska Division of Geologic and Geophysical Surveys (DGGS) in 1999 in addition to the 1972 map by Schmoll and Dobrovolny (Commellick, 1999; Schmoll and Dobrovolny, 1972). The geology of the project area consists primarily of sand deposits underlain by Bootlegger Cove Clay at depth of 20 to 40 feet or more.

Near the intersection of 58th Avenue and Arctic Boulevard the area is mapped as having peat (Schmoll and Dobrovolny, 1972).

Geologic conditions in the boreholes agreed with the general geology though variations between borings was noted.

6.2 Pavement Thickness and General Soil Lithology

The pavement thickness, where encountered, ranged from 1.5 to 2.5 inches based on measurements of recovered samples.

The subsurface conditions within the existing road prism where borings occurred generally consisted of a 1- to 3-foot-thick layer of granular fill underlain by fine grained material. The granular fill classification mixed between poorly graded gravel to poorly graded sand with varying fines content. The moisture content ranged between 3 and 8 percent. The fines content ranged between 5 and 8 percent. The frost susceptibility was estimated to be F-1 frost classification.

The fine-grained material below the granular fill varied between poorly graded sand, silty sand, silt, sandy silt, and clayey silt. The moisture content ranged between 5 and 41 percent. Fines content ranged between 3 and 95 percent. The frost susceptibility was estimated or determined to range from F-2 to F-4 frost classification.

A layer of peat was encountered in BH-06 from approximately 2.5 to 6 feet BGS. The moisture content ranged from 157 to 216 percent. BH-06 was located in the alley north of 58th Avenue beyond the right-of-way line extended. Peat was not encountered in any other borings.

The encountered subsurface conditions generally agreed with the historic geotechnical investigation findings. Detailed subsurface conditions can be found on the borehole logs in Appendix A. It should be noted that subsurface conditions outside the existing road prism could vary from the borehole logs.

6.3 Groundwater Conditions

Groundwater, if observed, was recorded on the borehole logs. Only the most recent measurement taken after drilling is displayed on the borehole logs in Appendix A. Table 6-1 provides a summary of the groundwater levels at the time of drilling and all subsequent measurements. All depths are relative to the existing roadway surface.

Borehole	Groundwater Levels While Drilling on 5/11/2021 (feet BGS)	Groundwater Levels on 5/28/2021 (feet BGS)	Groundwater Levels on 8/23/2021 (feet BGS)	Groundwater Levels on 9/26/2021 (feet BGS)
BH-01	14.0	10.5	10.4	10.2
BH-02	12.0	N/A	N/A	N/A
BH-03	Not Observed	15.6	15.5	15.0
BH-04	Not Observed	N/A	N/A	N/A
BH-05	3.2 (Perched) 16.3	14.6	7.9	6.4
BH-06	9.0	N/A	N/A	N/A

A perched groundwater lens was observed in BH-05 above the clayey silt at 3.2 feet BGS. Perched groundwater layers occur when zones of impervious soil prevent infiltration resulting in ponding water at shallow depths.

6.4 PID Field Testing Results

Standard practice in the MOA is to consider soil samples with PID readings of 20 parts per million (ppm) or higher potentially contaminated. Only one sample, at a depth of 1.7 feet BGS (S1B) in BH-06, had a PID reading above this threshold at 53.1 ppm and had a faint petroleum odor. The 2.5-foot sample screened had a PID reading of 1.1 ppm and had no petroleum odor. The extent of any potential contamination at the BH-06 location is shallow and very limited in vertical extent, and is more than 10 feet away from the project corridor. Due to the limited number of borings for this geotechnical effort, the limits of the contamination in the vicinity of BH-06 is unknown. To reduce the risk of encountering unknown conditions during construction, the MOA may elect to perform additional testing in this area.

6.5 Contaminated Site Review

Soil samples were tested using a PID during the field investigation per MOA requirements with results previously discussed in this report and values provided on the borehole logs. In addition, CRW consulted the Alaska Department of Environmental Conservation (ADEC) Contaminated Sites Program (CSP) on-line database for nearby recorded contaminated sites. A review of the CSP database revealed no sites within 500 feet of the project area.

7. Geotechnical Engineering Recommendations

CRW has developed the following recommendations based on our understanding of the project scope and considering the data obtained during our geotechnical investigation.

7.1 Site Preparation

All pavements, existing fill, existing curbs and gutters, trees, stumps, and other deleterious material should be cleared from the roadway reconstruction limits. Exposed subgrade at the bottoms of excavations should be scarified a minimum of 6 inches, moisture conditioned, and rolled smooth.

7.2 Utility Excavation

Any excavations for utilities should follow proper local, state, and federal requirements, including Occupational Safety and Health Administration (OSHA) standards. The soil and groundwater conditions for utility excavations will vary.

The contractor is responsible for trench stability, worker safety, and regulatory compliance as he will be present on a daily basis and can adjust efforts to obtain the needed stability. Surface runoff entering the excavation could present challenges and should be accounted for during construction. We anticipate excavations to use benching/sloping or shielding. If trench shoring, like cantilever or braced excavations, is utilized, additional recommendations for lateral earth pressures can be provided.

Utility excavations above the water table may stand relatively steeply initially but fail suddenly without warning. As the in-situ soils dry, they will tend to ravel and slough to their natural angle of repose, which we estimate to be between 1.5 to 1.8H:1V (horizontal to vertical). Below the water table, or if surface water is allowed to enter the trench, in-situ soils may slough, soften, squeeze, slump over time or due to disturbance, to slopes of 2 to 2.5H:1V or flatter.

Additionally, the sequencing of excavation for the utility line and the excavation for the roadway should be considered by the designers and the contractor. Should the roadway construction occur prior to utility installation, poor performance of the roadway may occur due to dissimilar material in the utility trench compared to the roadway structural section as well as damage and repair to any insulation and/or geotextile.

7.3 Dewatering

Subsurface conditions show the groundwater table below anticipated excavation bottoms based on measurements taken at the time of drilling and during subsequent readings. Dewatering is not anticipated to be required for the project.

7.4 Frost Depth and Permafrost

Seasonal frost was observed in BH-01 between 1 and 4 feet BGS, primarily in silt. Ice lenses up to 1 millimeter thick were observed below 3 feet BGS. BH-06 contained frozen peat from 2.5 to 3.5 feet BGS.

Typical design frost depths are estimated between 8 and 11 feet BGS in Anchorage and are common for relatively dry granular soils. It should be noted that seasonal fluctuations of snow cover, temperatures, infiltration/evaporation, groundwater table, and other climatic effects will have an impact on the design frost depth therefore any calculated value should only be considered a reasonably estimated design value as deeper frost penetrations are possible. In addition, the presence of groundwater within the upper 11 feet will also affect the frost depth in addition to the potential for ice lensing and heaving.

We have estimated design frost depths based on the modified Berggren equation using the commercially available Microsoft DOS program BERG2 as discussed in the next section of this report.

Permafrost was not encountered in the boreholes and is not expected at the project site.

7.5 Recommended Road Structural Sections

CRW has developed a recommended road structural section based on the current MOA DCM as outlined in Chapter 1 Streets, Section 1.10 Road Structural Fill Design. The structural section design uses the goal of reducing the freezing and thawing impacts to a specified percentage.

The DCM recommends two methods for frost considerations in the structural section design: the Complete Protection Method and the Limited Subgrade Frost Penetration Method.

The Complete Protection Method involves the removal of all frost susceptible subgrade soils beneath the roadway to the calculated frost penetration depth. These soils are replaced with non-frost susceptible fill. This method may be used regardless of the frost susceptibility of the subgrade soils. Rigid board insulation may also be used in the subbase of the structural section to reduce the required depth of classified fill and backfill. The Complete Protection Method would require excavation and replacement of frost susceptible soils down to depths of 8 to 10 feet, excluding insulation, which is not economical and therefore is not recommended.

The Limited Subgrade Frost Penetration Method attempts to restrict roadway surface movements to levels that will not adversely affect road surface life or quality. The method permits frost penetration into a frost susceptible subgrade equal to a maximum of 10 percent of the structural section design thickness.

The frost depth was analyzed using the commercially available MSDOS computer program BERG2 written by Braley and Connor (Braley and Connor, 1989) as approved in the DCM. The analysis calculates the estimated total frost penetration depth and determines the recommended structural section. For our analysis, we used the program default climate parameters for Anchorage and assumed conservative surface freeze/thaw n-factors based on local practice and published values. Soil layers were assigned in the program with estimated dry unit weights of the soil and average or anticipated water contents. Soil thermal parameters were calculated from the equations built into the BERG2 program (see Braley and Connor for further discussion).

7.5.1 Recommended Structural Section – Limited Subgrade Frost Protection Method

The project area contains frost susceptible subgrade with a F-2 to F-4 frost classification within 8 feet of the ground surface. Based on this, we recommend an insulated structural section using the Limited Subgrade Frost Penetration for the entire project alignment. We have developed a recommended structural section based on the BERG2 analysis, and have evaluated 2 inches of insulation. The insulation for the structural section in this analysis assumed a minimum R-value of R-4.5 per inch. Our recommended structural sections are presented in Table 7-1. A typical insulated section is presented in Figure 3.

Layer	Minimum Thickness, inches
Asphalt Pavement	2
Leveling Course	2
MOA Type II-A	16
Insulation	2
MOA Type II	24
Geotextile	N/A
Subgrade	N/A
Total Thickness	46

Table 7-1. Recommended Structural Section – 2 inches Insulation

See Appendix E for BERG2 analysis and detailed results. Note that the recommended structural section considers only minimum thicknesses.

7.6 Compaction Requirements

Pavement structural section fill material should be placed in loose lift thickness, no more than 12 inches, and compacted to a minimum of 95 percent of the Modified Proctor maximum dry density in accordance with ASTM D1557. Compaction verification of the backfill by a qualified inspector is also recommended.

7.7 Rigid Insulation

We recommend that rigid board insulation for the road structural section have a minimum compressive strength of 60 pounds per square inch (psi) and a maximum water absorption of 0.3 percent by volume in accordance with the current version of Municipality of Anchorage Standard Specifications (MASS). We recommend the insulation have a minimum R-value of R-4.5 per inch. We recommend a minimum of 12 inches of loose fill be placed over the insulation to protect from wheel loads during construction. We recommend a minimum of 16 inches of fill over the insulation for design to prevent frost formation in the form of differential icing.

Board insulation installation should be extended a minimum of 4 feet beyond the back of the curb when no sidewalk is present. Extending the insulation 4 feet will reduce the risk of the curb heaving up or "curb rolling". The potential for curb rolling decreases as the distance the insulation extends beyond the back of curb increases. The 4-foot layout has protected the curb well on past projects especially where the curbs need to be protected due to the flat longitudinal roadway grades like those on this project.

The insulation should extend 1 foot minimum beyond the back of any sidewalk but will not perform as well as the curb. To increase the performance of any sidewalk, the owner could consider extending the insulation 4 feet as well. Additionally, insulation below separated sidewalks that are separated by 4 feet or more could be reduced in thickness to save cost but will not perform as well.

Transitions between insulated and non-insulated sections should involve the extension of insulation beyond the roadway section 8 to 12 feet with the thickness reduced in these areas to minimize the possibility of differential heave. The insulation can be tapered from an R-value of 9 to an R-value of 4.5 in the transition zone. The subgrade in transitions should be graded (tapered) at a 10H:1V (horizontal to vertical) slope if construction distances permit. We recommend the transitions not be steeper than 5H:1V.

7.8 Geotextiles

We recommend that a geotextile be used at the base of the structural section along the entire project alignment. The use of a geotextile reduces the effects of thaw weakening, prevents fines migration, and increases lateral drainage at the base of the structural section. If soil layers at the base of the excavation are loose or soft, the geotextile will provide additional stabilization.

We recommend using a non-woven geotextile meeting MASS similar to Class 2, Type A. The geotextile should be placed on top of the excavated subgrade soils prior to placement of classified fill. The geotextile should be extended up the sides of excavations.

Typical installation involves placing the geotextile transverse to the centerline in order to avoid large overlaps. Fabric joints should be overlapped according to manufactures recommendations. Fabric joints may require sewing together depending on subgrade conditions and should follow the manufacturer's requirements.

7.9 Subdrains

Based on the groundwater level measurements along the project alignment, subdrains are not required.

7.10 Reuse of Material

Existing fill and native material that meets the classification for MOA Type II and Type II-A fill can be reused as classified fill in the roadway structural section. It is anticipated that the majority of existing fill and native material along the project alignment contain frost susceptible material and will not meet MOA Type II and Type II-A classification.

Existing fill and native material that meets the classification for bedding/backfill material can be reused in utility trenches.

The amount and quality of reuse of material will vary depending on factors including lateral extent of deposits, transitional lithology, degree of saturation and moisture control during construction, and mixing of excavated materials. Higher fines content soils were encountered near the ground surface which could make granular soils difficult to compact if mixed and water content increases. We recommend native material excavated for reuse be visually inspected for fines content and if the material becomes wet will require storage to be dried for reuse. This effort may be less efficient and cost more than complete removal and replacement with imported materials.

7.11 Utility Recommendations

All utilities should be bedded, backfilled, and compacted per MASS. The satisfactory performance of piped utilities is highly dependent upon the quality of soil below and along the sides of the pipe.

MOA standard is to adequately bury utilities to protect from freezing. If inadequate burial depths cannot be achieved as design proceeds, alternate methods such as insulation, active freeze protection like heat tape, or some combination are recommended. Recommendations on insulation for utility protection can be provided on request.

8. Limitations and Closure

The information submitted in this report is based on our interpretation of data from a field geotechnical investigation performed for this project. The conclusions contained in this report are based on site conditions as they were observed on the drilling date indicated. It is presumed that the borings in this investigation are representative of the subsurface conditions throughout the site. Effort was made to obtain information representative of existing conditions at the site. If, however, subsurface conditions are found to differ, we should be notified immediately to review these recommendations in light of additional information.

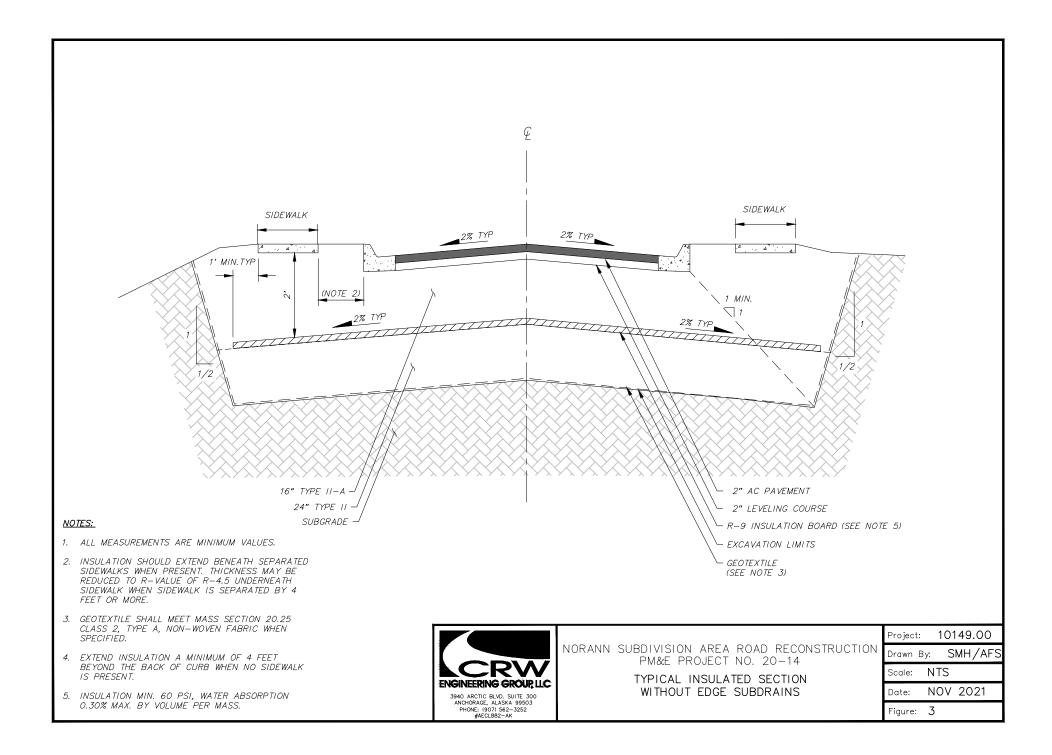
If there is substantial lapse of time between the submittal of this report and the start of work at the site, or if conditions have changed due to natural causes or construction operations at or adjacent to the site, we recommend that this report be reviewed to determine the applicability of the conclusions considering the changed conditions and time lapse. Unanticipated soil conditions are commonly encountered and cannot fully be determined by collecting discrete samples or advancing borings. The client and contractor should be aware of this risk and account for contingency accordingly.

Samples will be retained by CRW for six months following the date on which the final report is issued. Other arrangements may be made at the client's request.

This report was prepared by CRW for use on this project only, and may not be used in any manner that would constitute a detriment to CRW. CRW is not responsible for conclusions, opinions, or recommendations made by others based on data presented in this report.

9. References

Braley, W.A. and Connor, B., 1989. Berg2 Micro-Computer Estimation of Freeze and Thaw Depths and Thaw Consolidation. A report prepared for the State of Alaska Department of Transportation and Public Facilities Statewide Research, June, 1989.


Combellick, R.A., 1999. Simplified geologic map and cross sections of central and east Anchorage, Alaska: Alaska Division of Geological and Geophysical Surveys Preliminary Interpretive Report 1999-1.

Schmoll, H.R. and Dobrovolny, E., 1972. Generalized Geologic Map of Anchorage and Vicinity, Greater Anchorage Area Borough, Alaska. US. Geological Survey Open File Report: Technical Data Unit Classification number 513.

Figures

Appendix A

Borehole Logs

Included in this section:

- 1) Borehole Log Legend
- 2) Borehole Logs (BH-01 through BH-06)

UNIFIED SOIL CLASSIFICATION (ASTM D 2487)

GROUP SYMBOL							
GW	WELL-GRADED GRAVEL	gq					
GP	POORLY GRADED GRAVEL		soil contains 5% sand, ac with sand"				
GM	SILTY GRAVEL		if soil contains ≥ 15% sand, add "with sand"				
GC	CLAYEY GRAVEL		·= VI				
SW	WELL-GRADED SAND		gq				
SP	SP POORLY GRADED SAND						
SM		if soil contains ≥ 15% gravel, add "with gravel"					
SC	CLAYEY SAND		.= (/i				
CL	LEAN CLAY		soil d" or e is ndy"				
ML	SILT		ith san /er type add "sa				
OL	ORGANIC CLAY OR SILT		arse-gi add "w vhichev 30%, a svelly"				
СН	FAT CLAY		ains coarse- ≥ 29%, add " el" for which or for ≥ 30% or "gravelly				
MH	ELASTIC SILT		if soil contains coarse-grained soil from 15% to 25%, add "with sand" or "with gravel" for whichever type is prominent, or for 2 30%, add "sandy" or "gravelly"				
ОН	ORGANIC CLAY OR SILT		ifs from with prom				
PT	PEAT	<u>\\/</u>					

Gravels or sands with 5% to 12 % fines require dual symbols (GW-GM, GW-GC, GP-GM, GP-GC, SW-SM, SW-SC, SP-SM, SP-SC) and add "with clay or "with silt" to group name. If fines classify as CL-ML for GM or SM, use dual symbol GC-GM or SC-SM

Optional Abbreviations: Lower case "s" after USCS group symbol denotes either "sandy or "with sand" and "g" denotes either "gravelly" or "with gravel."

OTHER SYMBOLS

SYMBOL	L NAMES & LEGEND					
BLDR	X	overlay				
FILL	FILL GRANULAR FILL					
WD	WD WOODY DEBRIS					
RAP		man-made placed				

CRITERIA FOR DESCRIBING MOISTURE CONDITION (ASTM D 2488)

(ASTIVID 2400)						
DRY	ABSENCE OF MOISTURE, DUSTY, DRY TO THE TOUCH					
MOIST	DAMP BUT NO VISIBLE WATER					
WET	VISIBLE FREE WATER, USUALLY SOIL IS BELOW WATER TABLE					

DESCRIPTIVE TERMINOLOGY FOR

IE: (907) 562-3252 #AECL882-AK

I	PERCENTAGE	S (ASTM D 248	8)	LABORATORY TEST ABBREVIATIONS					
			AL	Atterberg Limit	ΡI	Plastic Index	TS	Thaw Consolidation	
			Consol	Consolidation	PID	Photoionization Detector	ΤV	Torvane	
	TRACE	0 - 5%	LMA	Limited Mechanical Analysis	Proc	Proctor	TXCD	Consolidated Drained Triaxial	
	FEW	5 - 10%	MA	Sieve and Hydrometer Analysis	PP	Pocket Penetrometer	TXCU	Consolidated Undrained Triaxial	
	LITTLE	10 - 25%	MC	Moisture Content	P200	Percent Fines (Silt & Clay)	тхии	Unconsolidated Undrained Triaxial	
	SOME	30 - 45%	NP	Non-plastic	SA	Sieve Analysis	VS	Vane Shear	
	MOSTLY	50 - 100%	OLI	Organic Loss on Ignition	SpG	Specific Gravity	Ω	Soil Resistivity	

RELATIVE

DENSITY VERY LOOSE

MED DENSE

VERY DENSE

LOOSE

DENSE

SS

SSO

HD

ΒD

CA

G

(a)

(b) (c) (d) U, COHESIONLESS SOILS^(a)

 N_{60}

(BLOWS/FOOT)(c)

0 - 4

4 - 10

10 - 30

30 - 50

OVER 50

SPT Sampler (2 in. OD, 140 lb hammer)

Oversize Spit Spoon (2.5 in. OD, 140 lb typ.)

Bulk Drive (4 in. OD, 300/340 lb hammer typ.)

Continuous Core (Soil in Hollow-Stem Auger)

Grab Sample from surface / testpit

Heavy Duty Split Spoon (3 in. OD, 300/340 lb typ.)

RELATIVE DENSITY / CONSISTENCY ESTIMATE USING STANDARD PENETRATION TEST (SPT) VALUES (FROM TERZAGHI & PECK 1996)

CONSISTENCY

VERY SOFT

VERY STIFF

Soils consisting of gravel, sand and silt, either separately or in combination possessing no characteristics of plasticity, and exhibiting drained

Solis consisting of graver, sand and sin, enter separately of in combination possessing to characteristics of plasticity, and exhibiting undrained behavior. Solis possessing the characteristics of plasticity, and exhibiting undrained behavior. Refer to ASTM D 1586-99 for a definition of N. Undrained shear strength, $s_u = 1/2$ unconfined compression strength, U_c. Note that Torvane measures s_u and Pocket Penetrometer measures

SAMPLER ABBREVIATIONS

SOFT

STIFF

HARD

MEDIUM

COHESIVE SOILS(b)

 N_{60}

(BLOWS/FOOT)(c)

0 - 2

2 - 4

4 - 8

8 - 15

15 - 30

OVER 30

С

ΤW

MS

GP

AR

AG

Core (Rock)

Geoprobe

Modified Shelby

Auger Cuttings

Air Rotary Cuttings

Thin Wall (Shelby Tube)

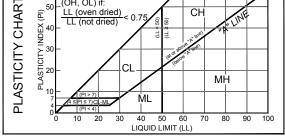
UNCONFINED

COMPRESSIVE

STRENGTH (TSF)^(d)

0 - 0.25

0.25 - 0.50


0.50 - 1.0

1.0 - 2.0

2.0 - 4.0

OVER 4.0

60 ORGANIC CLAY OR SILT (OH, OL) if: 50 LL (oven dried) CH Ē < 0.75

COMPONENT DEFINITIONS BY GRADATION

COMPONENT	SIZE RANGE
BOULDERS	ABOVE 12 IN.
COBBLES	3 IN. TO 12 IN.
GRAVEL	3 IN. TO NO. 4 (4.76 mm)
COARSE GRAVEL	3 IN. TO 3/4 IN.
FINE GRAVEL	3/4 IN. TO NO. 4 (4.76 mm)
SAND	NO. 4 (4.76 mm) TO NO. 200 (0.074 mm)
COARSE SAND	NO. 4 (4.76 mm) TO NO. 10 (2.0 mm)
MEDIUM SAND	NO 10 (2.0 mm) TO NO. 40 (0.42 mm)
FINE SAND	NO. 40 (0.42 mm) TO NO. 200 (0.074 mm)
SILT AND CLAY	SMALLER THAN NO. 200 (0.074 mm)
SILT	0.074 mm TO 0.005 mm
CLAY	LESS THAN 0.005 mm

LEGEND: FIELD AND LABORATORY TEST ABBREVIATIONS

Phr RAP 6 Т О 5 L A A A L

	FROZEN SOIL CLASS	SIFICATIO	N (AS	5TM D 408	33)			
1. DESCRIBE SOIL INDEPENDENT OF CLASSIFY SOIL BY THE UNIFIED SOIL CLASSIFICATION SYSTEM								
FROZEN STATE	MAJOR	GROUP		SUBGROUP		IP	ICE BONDING SYMBOLS	
	DESCRIPTION	DESIGNA	TION	DES	CRIPTION	DESIGNATION	No ice-bonded soil	
	Segregated		Poorly bor		nded of friable	N _f	observed	
	ice not visible by eye	N		Well	No excess ice	Nbn	Poorly bonded or friable	
2. MODIFY SOIL DESCRIPTION BY				bonded	Excess ice	Nbe	Well bonded	
DESCRIPTION OF FROZEN SOIL	ON OF			Individual ice crystals or inclusions		Vx		
	Segregated ice			Ice coatin	gs on particles	Vc	DEFINITIONS	
	visible by eye (ice less than 25 mm thick)	v	V Random or irregularly oriented ice formations Stratified or distinctly oriented ice formations		Vr	Candled Ice is ice which has rotted or otherwise formed into long columnar crystals, very loosely bonded together.		
						Vs	<u>Clear Ice</u> is transparent and contains only a moderate number of air bubbles.	
				Uniformly	distributed ice	Vu	<u>Cloudy Ice</u> is translucent, but essentially sound and non-pervious.	
3. MODIFY SOIL DESCRIPTION BY DESCRIPTION OF	J	ICE		Ice with	soil inclusions	ICE+soil type	Friable denotes a condition in which material is easily broken up under light to moderate pressure.	
SUBSTANTIAL IC STRATA		102		Ice without soil inclusions		ICE	Granular Ice is composed of coarse, more or less equidimensional, ice crystals weakly bonded together.	
	FROST DESIGN S	DESIGN SOIL CLASSIFICATION ⁽¹⁾		<u>Ice Coatings</u> on particles are discernible layers of ice found on or below the larger soil particles in a frozen soil mass. They are sometimes				
FROST GROUP ⁽²⁾	GENERAL SOIL TY	% FINER THAN 0.02 mm BY WEIGHT SOIL CLASS			associated with hoarfost crystals, which have grown into voids produced by the freezing action.			
NFS ⁽³⁾	(a) Gravels Crushed stone Crushed rock			0 - 1.5 GW,		V, GP	Ice Crystal is a very small individual ice particle visible in the face of a soil mass. Crystals may be present alone or in a combination with other ice formations.	
	(b) Sands		0 - 3		SW, SP GW, GP		<u>Ice Lenses</u> are lenticular ice formations in soil	
PFS ⁽⁴⁾ [MOA NFS] [FAA NFS]	(a) Gravels Crushed stone Crushed rock		1	1.5 - 3			 occurring essentially parallel to each other, generally normal to the direction of heat loss and commonly in repeated layers. Ice Segregation is the growth of ice as distinct 	
[MOA F2] [FAA FG-2]	(b) Sands		3	3 - 10	SW, SP		lenses, layers, veins and masses in soils, commonly but not always oriented normal to	
S1 [MOA F1] [FAA FG-1]	Gravelly soils			3 - 6	GW, GP, GW-GM, GP-GM,		direction of heat loss.	
[MOA FI][FAA FG-I] S1						C, GP-GC	Massive Ice is a large mass of ice, typically nearly pure and relatively homogeneous.	
[MOA F2] [FAA FG-2] F1 ⁽⁵⁾	Sandy soils			3 - 6 SW, SP, SW-SM, SP-S SW-SC, SP-SC		C, SP-SC	Poorly-Bonded signifies that the soil particles are weakly held together by the ice and that th frozen soil consequently has poor resistance to chipping or breaking.	
F1 ⁽³⁾ [FAA FG-1]	Gravelly soils		6	6 - 10	10 GM, GC, GM-GC, GN GP-GM, GW-GC, G			
F2 ⁽⁵⁾	(a) Gravelly soils	i	1	0 - 20		V-GM, GP-GM, C, GP-GC	Porous Ice contains numerous void, usually interconnected and usually resulting from melting at air bubbles or along crystal interfaces	
[FAA FG-2]	(b) Sands		6	6 - 15		I, SP-SM, SC, P-SC, SM-SC	from presence of salt or other materials in the water, or from the freezing of saturated snow. Though porous, the mass retains its structural	
F3 ⁽⁵⁾	(a) Gravelly soils		1	10 -20 GM, GC		C, GM-GC	unity.	
[FAA FG-2] [For Clays, FAA FG-3]	(b) Sands, except very fi sands		6	6 - 15	,	C, SM-SC	Thaw-Stable frozen soils do not, on thawing, show loss of strength below normal, long-time thawed values nor produce detrimental	
	(c) Clays, PI>12 (a) Silts					., CH H, ML-CL	settlement.	
- (5)	(b) Very fine silty sa	nds	0	 Ver 15	· · · · ·	C, SM-SC	<u>Thaw-Unstable</u> frozen soils show on thawing, significant loss of strength below normal,	
F4 ⁽⁵⁾ [FAA FG-4]	(c) Clays, PI<12					ML-CL	long-time thawed values and/or significant settlement, as a direct result of the melting of	
	(d) Varved clays or other fine-grained banded sediments				CL or CH laye	red with ML, MH, SC, or SM-SC	the excess ice in the soil	
(2) USACE frost groups directly corresp	1) From the U.S. Army Corps of Engineers (USACE), EM 1110-3-138, "Pavement Criteria for Seasonal Frost Conditions", April 1984 2) USACE frost groups directly correspond to frost groups in Municipality of Anchorage (MOA) Design Criteria Manual (DCM). Federal Aviation Administration (FAA) ost groups come from Table 2-2 in Section 2.7 of Advisory Circular (AC) (150/5320-6F, Airport Pavement Design and Evaluation.							

(z) USANCE most groups uneray correspond to nost groups in multicipality of Anchorage (MOA) Design Criteria Manual (DCM). Fer frost groups come from Table 2-2 in Section 2.7 of Advisory Circular (AC) 150/5320-6F, Airport Pavement Design and Evaluation. (3) Non-frost susceptible (4) Possibly frost susceptible, requires lab test for void ratio to determine frost design classification. (5) Consistent with MOA Definition.

added.dwg

debris_

RAP

Legend \Geotech_

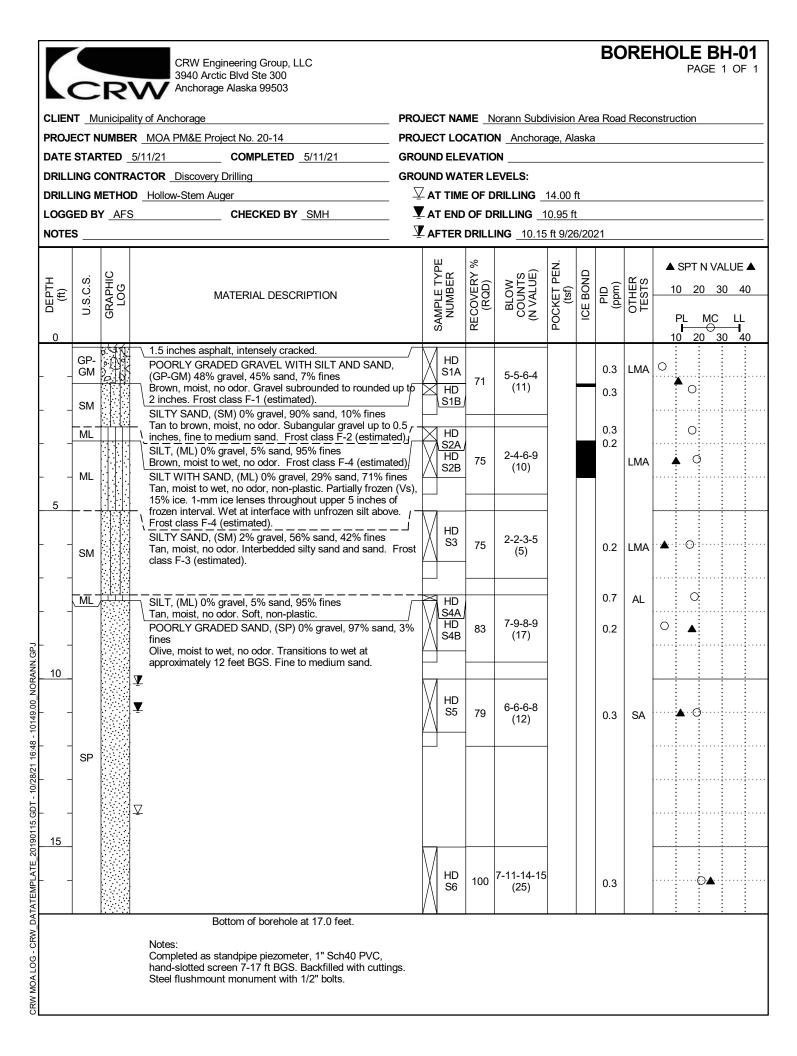
_ 00

Report Template\Borehole

Geotechnical

Geotechnical\CRW

ces\Tech


Refer

Ļ 5

FILE NAME:

LEGEND: FROZEN SOIL CLASSIFICATION

CLIEN	нт _М	unicipa	lity of Anchorage	PROJE	CT NA	ME _ N	lorann Sub	division	Area	a Road	Reco	nstruct	ion		
PROJ		UMBE	R MOA PM&E Project No. 20-14	PROJE	CT LO	CATIO	N Anchor	age, Al	aska						
DATE	STAF	RTED _	5/11/21 COMPLETED _5/11/21	GROU	ND ELE	VATIC	ON								
			ACTOR Discovery Drilling												
			D Hollow-Stem Auger				RILLING								
			S CHECKED BY SMH				RILLING _								
NOTE	s		_		AFTER	DRILL	ING	1	1	1					
, DEPTH (ft)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	ICE BOND	(mdd) DIA	OTHER TESTS	10 P	20 L N	VALUE	<u>40</u> L
0	GP- GM		2 inches asphalt, intensely cracked. POORLY GRADED GRAVEL WITH SILT AND SAND, (GP-GM) 60% gravel, 35% sand, 5% fines Brown, moist, no odor. Gravel subrounded to rounded u 3 inches. Frost class F-1 (estimated).	up to	HD S1	50	6-4-5-3 (9)			0.2		0		30	40
- - 5			SILT, (ML) 1% gravel, 1% sand, 98% fines Tan, moist to wet, no odor, slightly plastic. Upper 5 inch of sample spoon as above, not sampled. Occasional subrounded gravel up to 0.75 inches. Partially frozen (V 15% ice. 2- to 5-mm ice lenses at approximately 3 and 3 feet BGS. Wet at interface with unfrozen silt above. Fro	′s), 3.5	HD S2	100	5-5-6-4 (11)			0.2	MA				
	-		 class F-4 (hydrometer). SILTY SAND, (SM) 0% gravel, 81% sand, 19% fines Olive, moist, no odor. Fine to medium sand. Frost class F-3 (estimated). 	-	HD S3A HD S3B	67	1-3-8-6 (11)	_		0.9 0.5	SA			0	• • • • •
-	SM				HD S4	67	6-6-5-6 (11)	_		0.2			0		
	SM		SILTY SAND, (SM) 0% gravel, 53% sand, 47% fines Olive brown, moist, no odor. SILT, (ML) 10% gravel, 10% sand, 80% fines ▽ Olive brown, moist to wet, no odor. Clear bedding		HD S5A HD S5B	100	4-5-4-3 (9)	2		0.2 0.2	LMA		С) ©	
-	ML		delineations formed by single layers of fine gravel . VS 25.1/6.3 psf												
	ML		SILT, (ML) 0% gravel, 5% sand, 95% fines Olive brown, wet, no odor, slightly plastic, moderately so Very fine sand. Gradational changes in sand and silt content throughout this interval. Water comes to surface sample after resting or agitating. VS 33.4/16.7 psf	\	HD S6	100	4-4-4-3 (8)	2.75		0.2				,	
			Bottom of borehole at 17.0 feet. Notes: Backfilled with cuttings, cold patch.												

			ty of Anchorage								Reco	nstruc	tion		
			MOA PM&E Project No. 20-14												
DATE	STAF	RTED 5	5/11/21 COMPLETED <u>5/11/21</u>	GRO	JND ELE	VATIC	DN								
			CTOR Discovery Drilling	GRO	JND WA	TER LI	EVELS:								
			D Hollow-Stem Auger				RILLING								
.OGG	ED B	Y AFS	CHECKED BY SMH				RILLING								
IOTE	s			Ā	AFTER	DRILL	ING <u>15.00</u>) ft 9/26	6/20	21					
UEPIH (ft)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	ICE BOND	DID (mdd)	OTHER TESTS			N VALU) 30	
0	<u> </u>	9			SAMI	REC.	۳öz	POC	Ð		οF			MC 30	_
-	SP- SM	0 0 0 0 0 0 0	 2 inches asphalt. POORLY GRADED SAND WITH SILT AND GRAVEL, (SP-SM) 44% gravel, 48% sand, 8% fines Brown, moist, no odor. Gravel subangular to subrounder to 2.5 inches. Frost class F-1 (estimated). 		HD S1	58	6-9-5-7 (14)	_		0.3	SA	0	A		
-	ML	••••••••••••••••••••••••••••••••••••••	SILT WITH SAND, (ML) 0% gravel, 15% sand, 85% fir Tan, moist, no odor, slightly plastic, moderately soft. Fi class F-4 (estimated). VS 33.4/16.7 psf	nes rost	HD S2	92	4-2-3-3 (5)	2.75 3.3 2		0.2				0	
5	SP_		POORLY GRADED SAND, (SP) 0% gravel, 95% sand,	, 5%				-					i		:
-			I fines Tan, moist, no odor. Small amount sampled in shoe of 2.5-ft BGS spoon. Frost class NFS (estimated). SILT, (ML) 0% gravel, 5% sand, 95% fines Tan, moist, no odor. 2 inches of tan silt in top of 5-ft BC spoon. No tests on small amount recovered. Frost class F-4 (estimated).	 38	HD S3	83	3-6-6-7 (12)	_		0.1	LMA	Q	.		
_	SM		SILTY SAND, (SM) 0% gravel, 85% sand, 15% fines Tan, moist, no odor. Fine to medium sand. Frost class (estimated).	5 F-2	HD S4	75	1-4-5-6 (9)	_		0.1		0			
<u>10</u>			SILT, (ML) 0% gravel, 5% sand, 95% fines Tan, wet, no odor, non-plastic. SILT, (ML) 0% gravel, 10% sand, 90% fines		HD S5A HD	100	3-3-3-3 (6)	3		0.1	AL			0	
-	ML		Tan silt, moist to wet, no odor, slightly plastic, soft. Con thin lenses of fine to medium sand.	ntains _/	/\ S5B			2.5		0.2					
- 15	 	,	SANDY SILT, (ML) 6% gravel, 36% sand, 58% fines Tan, moist to wet, no odor, non-plastic. Fine to medium							0.2	SA			0	
_	SM		sand and gravel. SILTY SAND, (SM) 5% gravel, 55% sand, 40% fines Tan, moist to wet, no odor.		HD S6B	100	3-2-5-7 (7)			0				0	
			Bottom of borehole at 17.0 feet. Notes: Completed as standpipe piezometer, 1" Sch40 PVC, hand-slotted screen 6.5-16.5 ft BGS. Backfilled with												

			CRW Engineering Group, LLC 3940 Arctic Blvd Ste 300							BC)RE	HC			H-04 1 OF 1
			Anchorage Alaska 99503							_					
							orann Subo				d Reco	nstru	iction		
			MOA PM&E Project No. 20-14												
			5/11/21 COMPLETED <u>5/11/21</u>												
DRILL	ING C	ONTRA	CTOR Discovery Drilling	GROUI	ND WA	TER LI	EVELS:								
DRILL	ING M	ETHOD	Hollow-Stem Auger	4	T TIM	e of d	RILLING _	Not	obs	erved.					
LOGG	ED B	AFS	CHECKED BY SMH	A	T END	of di	RILLING _								
NOTE	s			4	FTER	DRILL	ING	I							
DEPTH (ft)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	ICE BOND	(mqq)	OTHER TESTS	1	10 2	20 3	LUE ▲ 0 40
0					SA	RE		Q	_			1			LL 0 40
	GP- GM		 2.5 inches asphalt. POORLY GRADED GRAVEL WITH SILT AND SAND, (GP-GM) 49% gravel, 44% sand, 7% fines Brown, moist, no odor. Gravel subangular to subrounded to 2.5 inches. Auger grinding in upper 2 feet BGS and gravel up to 3 inches in auger cuttings. Small amount of native sand in shoe of first sample spoon. Frost class F 	- 	HD S1	75	9-9-6-5 (15)	-		0.3	LMA	⊙ · ·	•		
_	SM		(estimated). SILTY SAND, (SM) 1% gravel, 58% sand, 41% fines Olive brown, moist, no odor. Layered sand and silty sand with gradational transitions between. Fine to coarse sand Frost class F-3 (hydrometer).		HD S2	67	4-3-2-2 (5)	_		0.2	МА		0		
5	-		SILTY SAND, (SM) 6% gravel, 72% sand, 22% fines Olive brown, moist, no odor. Gravel subangular to subrounded up to 2 inches. Some silt lenses throughout infrequent organic partings at 10 feet BGS and deeper. Frost class F-3 (estimated).	.,	HD S3	67	1-3-3-3 (6)	_		0.1	LMA				
_					HD S4	92	3-2-4-5 (6)	_		0.2		A			
	SM				HD S5	67	3-4-4-6 (8)	-		0.2		· · · · · ·			
-															
	ML		SILT, (ML) 0% gravel, 5% sand, 95% fines Olive brown, moist, no odor, friable and non-plastic. One		HD S6A HD S6B	- 83	5-5-4-7 (9)			0.2 0.2		0		Ç	
		<u>.1.1.1.1</u>	1-inch piece of angular gravel at interface with silty sand above. Bottom of borehole at 17.0 feet. Notes: Backfilled with cuttings, cold patch.			1		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>:</u>		

				/ of Anchorage				lorann Subo				Reco	nstruc	ion	
				MOA PM&E Project No. 20-14	_			N Anchor							
				11/21 COMPLETED _ 5/11/21 CTOR _ Discovery Drilling)N							
				Hollow-Stem Auger		_		RILLING	3.17 ft	Like	lv perc	hed.			
				CHECKED BY SMH				RILLING							
OTE	S _ Ev	idenc	e of	ground movement.		AFTER	DRILL	ING <u>6.40</u>	ft 9/26/	202	1				
(ft)	U.S.C.S.	GRAPHIC		MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	ICE BOND	(mqq) DIA	OTHER TESTS	10 P	©PT N V 20 :: L MC	30 40
0	GP- GM			2 inches asphalt, intensely cracked and distressed. / low spot where water pools. POORLY GRADED GRAVEL WITH SILT AND SAN (GP-GM) 50% gravel, 44% sand, 6% fines Brown, moist, no odor. Gravel subangular to rounder	ID, d up to	HD S1A HD S1B	58	4-3-2-2 (5)	2.6 >4.5		0.5 0.5	SA	0 	<u>20</u>	30 40
-	ML CL- ML		∑	 2 inches. Cobbles up to 7 inches in auger cuttings. class F-1 (estimated). SILT, (ML) 0% gravel, 5% sand, 95% fines Tan, wet, no odor, slightly plastic, soft to stiff. Satura with water at top of sample. Frost class F-4 (estimat VS insufficient quantity to test CLAYEY SILT, (CL-ML) 0% gravel, 14% sand, 86% Tan, moist, no odor, low plasticity. Frost class F-4 	ited ed).	HD S2A HD S2B	83	1-1-3-3 (4)	-		0.3 0.3	MA, AL			5
5			- V	(hydrometer). CLAYEY SILT, (CL-ML) 0% gravel, 7% sand, 93% f Tan, moist, no odor, low plasticity, moderately stiff. F class F-4 (estimated). VS 62.7/25.1, 54.3/33.4 psf	/ - ines	HD S3	83	2-4-4-5 (8)	4.0 4.25		0.3	LMA	····		·O· · · ·
-	CL- ML			VS 48.0/10.4, 62.7/18.8 psf		HD S4	100	2-3-3-5 (6)	3.25		0.2				O
-			<u></u>	SANDY SILT, (ML) 4% gravel, 40% sand, 56% fines Tan-brown, moist, no odor, non-plastic.		HD S5	75	3-4-5-7 (9)	-		0.2	LMA		O	
-	ML		•••••••••••••••••••••••••••••••••••••••												
-	ML	<u></u>	· · · · · · · · · ·	SILT, (ML) 5% gravel, 5% sand, 90% fines Olive-gray, moist, no odor, slightly plastic. Coarse sa gravel (up to 0.25 inches) suspended in sandy silt m - around 15-15.5 feet BGS. VS 25.1/4.2, 35.5/6.3 psf		HD S6	100	2-2-3-5 (5)	2.3 2.25		0.2)
				Bottom of borehole at 17.0 feet. Notes: Completed as standpipe piezometer, 1" Sch40 PVC, hand-slotted screen 6.5-16.5 ft BGS. Backfilled with granular cuttings from BH-03 and BH-04. Steel flush											

	C	R	3940 Arctic Blvd Šte 300 Anchorage Alaska 99503												
	IT _M	unicipa	ality of Anchorage	_ PROJE		ME N	orann Subo	division	Area	Road	d Reco	nstruc	tion		
PROJI		IUMBE	R MOA PM&E Project No. 20-14	_ PROJE		CATIO	N Anchora	age, Ala	aska						
			5/11/21 COMPLETED 5/11/21				N								
			ACTOR Discovery Drilling												
			DD Hollow-Stem Auger				RILLING _								
			S CHECKED BY SMH				RILLING								
NOTE	S _In	unpav	ed alleyway adjacent to 58th Ave.	_ /	AFTER	DRILL	ING	1			1	1			
					Ë~	%	(a (i)	z.				A :	SPTI	N VAL	.UE 🔺
UEРIH (ft)	C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	ICE BOND	(mdd)	OTHER TESTS	10) 20	0 30	40
UEF (f	U.S.C.	LC	MATERIAL DESCRIPTION		NUM	NOS NOS	BLO	ЦЩ С Щ с Щ с Щ с Щ с Щ с Щ с Щ с Щ с Щ с Щ с	빙	I dd	БЩ Ц				
•					SAI	RE	95	PG	≚			F	י∟ ו⊢		LL –I
0			POORLY GRADED GRAVEL WITH SILT AND SAN	D, \	Лнр							10	<u>) 2</u> (<u>ວິ30</u> :	<u>40</u>
	GP- GM		(GP-GM) 55% gravel, 40% sand, 5% fines Brown, moist, no odor. Gravel subangular to subroun	nded up		83	8-6-4-3			0.4		0			
	Givi		to 2 inches. Frost class F-1 (estimated).	. 2	HD	05	(10)			53.1			0		
_	SM	0.0.0	SILTY SAND, (SM) 10% gravel, 70% sand, 20% fine Brown-gray, moist, faint POL odor. Gravel rounded u	es	S1B			-		00.1			•••••		
		<u>SPI</u>	1.25 inches. Occasional oxidized/blackened roots. Fro	ost _/				-		1.1					15
-	PT	<u></u>	\ <u>class F-3 (estimated).</u>	/	S2A	100	3-3-1-2								
_		<u> </u>	Brown, frozen (Nbn), organic odor.		HD	100	(4)		\square	1.3					
	PT	<u> 14</u>	PEAT, (PT) Brown, fibrous, moist, organic odor. Becoming less fil	ibrous 🗸	S2B			-		1.5					2
5		<u><u> </u></u>	and gradationally transitioning to silt at bottom.					-							
				/	S3A		1-3-3-4			1.7					17
_			SANDY SILT, (ML) 0% gravel, 34% sand, 66% fines Gray, moist, no odor, stiff, non-plastic. Some roots ar	nd	HD	100	(6)	>4.5		0.2	LMA	··· A ·:	····0	•••••	
_	ML		iron-oxide staining. Frost class F-4 (estimated). VS 50.1/failure psf	Ľ	S3B			-							
			SILT, (ML) 0% gravel, 5% sand, 95% fines	+	1			-							
-			Gray silt, moist to wet, no odor, non-plastic to slightly plastic, soft. Wet at 9 and 15 feet BGS.	·)			2-4-3-4	>4.5,					· · · · · : :		•••••
			∇ VS 71.0/35.5, 41.8/16.7 psf		S4	75	(7)	3.75		0.2				0	
			-												
10			VS 71.0/37.6, 25.1/16.7 psf		1			-							<u> </u>
			v3 / 1.0/37.0, 23.1/10.7 psi		HD		3-4-3-2						÷	÷	÷
_					S5	75	(7)	>4.5		0.1		···· 🛦		• 🛈 • 🕂	•••••
_	ML							1.75							
-															••••
_													•••••	•••••	
15					7			-				İ			<u> </u>
			VS 16.7/12.5 psf	$ \rangle$	HD S6A		1 6 40 40	>4.5		0.1	AL			0	
_			SILTY SAND, (SM) 0% gravel, 80% sand, 20% fines	;	HD	100	4-6-12-13 (18)						···· 🔺		••••
	SM		Gray, moist, no odor. Medium sand.	/	S6B			2.75		0.1			Č		
			Bottom of borehole at 17.0 feet.												
			Notes: Rockfilled with cuttings, grovel cuttings spread at surf	face											
			Backfilled with cuttings, gravel cuttings spread at surf	Idue.											

Appendix B

Laboratory Results

Included in this section:

1) Laboratory Results from Alaska Testlab

Material Test F	Report			Issi	oort No: AS ue No: 4			
Client: CRW Engineering (3940 Arctic Blvd., S Anchorage, AK 995	ite. 300	CC:	Maria Kampsen Steven Halcomb				tested below. This repor proval of Alaska Testlab	
Project: 10149.00 - Norann ,				Revie Title: Date:		oratory Superv	risor	
Sample Details								
Sample ID Client Sample ID Date Sampled		21-0705-S01 H-01 Sample 1A	21-0705-S02 BH-01 Sample 1B	21-0705-S03 BH-01 Sample 2A	21-0705-S04 BH-01 Sample 2B	21-0705-S05 BH-01 Sample 3	21-0705-S06 BH-01 Sample 4A	
Other Test Results								
Description Water Content (%)	Method ASTM D 2216	3.5	16.9	Res 16.7	19.0	16.0	17.6	Limits
Method Group Symbol Group Name Tested By	ASTM D 2487	B GP-GM y graded gravel with silt and sand	B	В	B ML Silt with sand (unknown)	B SM Silty sand	B	
Percent Gravel Percent Sand Percent Fines (Silt/Clay) Group Symbol	LMA (Internal Meth	od) 48 45 7 GP-GM			0 29 71 ML	2 56 42 SM		
Approximate maximum grain size Material retained on 425µm (No. 40) (%) Method of Removal Grooving Tool Type Specimen preparation method Drying Method Special selection process Rolling Method for PL As Received Water Content (%) Liquid Limit Device Type Liquid Limit Plastic Limit Plastic Limit Plasticity Index Liquid Limit Procedure Tested By	ASTM D 4318						N/A Plastic Dry Air N/A Hand 17.6 Mechanical N/A NP NP Multipoint (A) Nathan Lervold	

Comments

N/A

ATL	>					AI	aska Testlab - Anchorag 4040 B Street, Suite 10 Anchorage, AK 9950 Phone: 907-205-198 Fax: 907-782-440 info@alaskatestlab.cor
Materi	al Test F	Report			Report No	o: ASM:21-0705	
Client:	CRW Engineering (3940 Arctic Blvd., S Anchorage, AK 995 10149.00 - Norann	Group, LLC Ste. 300	CC: N	Maria Kampsen Steven Halcomb	The results containe	d below pertain only to the items tested be in full, without the prior written approval of	
	,				Reviewed By Title: Date:	r: Oscar Lage Laboratory Supervisor 6/3/2021	
Sample D	etails						
Sample ID Client Samp Date Sample			21-0705-S07 BH-01 Sample 4B	21-0705-S08 BH-01 Sample 5	21-0705-S09 BH-01 Sample 6		
Particle S	ize Distribut	tion					
Method: ASTM D 6913	3	Sieve Size 75.0mm		100	% Passing		Limits
Description: Particle size c (gradation) of analysis.		50.0mm 37.5mm 25.0mm 19.0mm		100 100 100 100			
Drying by: Oven Washed:		12.5mm 9.5mm 4.75mm 2.0mm		100 100 100 100			
Sample Wash	160	850µm 425µm 250µm 150µm 75µm Finer 75µm		100 98 57 9 3 2.7			
Other Tes	et Rosults						
Description		Method			Results		Limits
Water Conten Method	t (%)	ASTM D 2216	В	18.8 B	21.3 B		Liinita
Group Symbo Group Name Method	1	ASTM D 2487		SP Poorly graded sand Method A			
Sample Obtain Group Name Group Symbo Composite Sie Dispersion Me	l eving Used)	Oven-Dried Poorly graded sand SP No Dispersant by hand			
Prior Testing							

Comments

N/A

ATL

Materi						t					Issue N					hould not be
	3940 Ancho	Arctic prage	neering Blvd., , AK 99	Ste. 3 503			CC:					ined below pertain onl				
Project:	10149	9.00 -	Noranı	٦												
	,										Reviewed Title: Date:	By: Oscar Lag Laborator 6/1/2021		ervisor		
Sample	Deta	ails						(Othe	r Tes	st Result	s				
Sample ID			21-0	705-5	S08)escri			Metl			Result	Limits
Client Sam Specification)	BH-0 Siev		mple 5			Ν	Vater (//ethoo	1	nt (%)			2216	18.8 B	
									/lethoo		inad While	AST	ΜD		Method A	
									Sample Group		ined While		Po		/en-Dried ded sand	
									Group					o, g.o.	SP	
											ieving Used		р.		No	
									Dispers Prior To				Dis	spersan	t by hand	
								<u>_</u>		Janiy						
Particle S	Size	Dis	tribu	ition	ו											
												Method:		STM D	6913	
												Drying by: Date Teste)ven	1	
% Pass	sing											Tested By:		/21/202 lathan L		
100				() 				<u> </u>								
90 + • • •						•••••	•••••	···-{-	••••••			0:		0/ D-		1
80												Sieve Size 3in (75.0mr		% Pa	ssing 100	Limits
								1				2in (50.0mr			100	
70+							•••••		1		****	1½in (37.5r			100	
60 - · · ·		anaas							· \ · · · ·			1in (25.0mr ¾in (19.0m			100 100	
50 - · · ·												⁷ ₄in (19.0m 1⁄₂in (12.5m			100	
-												3/8in (9.5m	m)		100	
40 - • • •							••••		··· <i>\</i> {··		••••	No.4 (4.75r			100	
30+									. }.			No.10 (2.0r No.20 (850			100 100	
												No.40 (425			98	
20								* * * * * *	1			No.60 (250	µm)		57	
10			• • • • • •			••••				<u> </u>	• • • •	No.100 (15 No.200 (75	μm) ́	I	9 3	
0	75.0mm + 50.0mm +	37.5mm -	19.0mm	9.5mm -	4.75mm -	2.0mm -	850µm -	425µm -	250µm -	- muloct	75µm	Finer 75µm			2.7	
	5	നറ	4 4 - 9	1000	4	Sieve										

Comments

NP = Non Plastic

Material Test F	Ponort			Rep	ort No: AS	M:21-0707	-	askatestlab.c
Client: CRW Engineering G		CC:	Maria Kampsen	ISSU The rest	JE NO: 3 ults contained below pe	rtain only to the items	tested below. This repo	
3940 Arctic Blvd., S Anchorage, AK 995	te. 300	\$	Steven Halcomb	reprodu	cea, except in tuil, witho	ut the prior written ap	proval of Alaska Testlab	or the agency.
Project: 10149.00 - Norann								
,				Revie Title: Date:		ratory Superv	isor	
Sample Details								
Sample ID Client Sample ID Date Sampled		21-0707-S01 BH-02 Sample 1	21-0707-S02 BH-02 Sample 2	21-0707-S03 BH-02 Sample 3A	21-0707-S04 BH-02 Sample 3B	21-0707-S05 BH-02 Sample 4	21-0707-S06 BH-02 Sample 5A	
Particle Size Distribut	ion							
Method:	Sieve Size			% Pa	assing			Limits
ASTM D 422 Description: Analysis of Particle Size Distribution in Soils. Sieving for Particles >75µm, Hydrometer Drying by:	3in (75.0mm 2in (50.0mm 1½in (37.5m 1in (25.0mm ¾in (19.0mm ½in (12.5mm 3/8in (9.5mm) m)) i)	100 100 100 100 100 100 100		100 100 100 100 100 100 100			
Washed: Sample Washed	No.4 (4.75m) No.10 (2.0m) No.20 (850µ) No.40 (425µ) No.60 (250µ) No.100 No.200 (75µ) Finer No.200	n) m) m) m) m)	99 99 99 99 99 99 99 98.4		100 100 99 92 49 19 19.5			
Other Test Results								
Description	Method			Res	ults			Limits
Water Content (%) Method	ASTM D 2216	8.3 B	47.4 B	28.8 B	3.8 B	15.2 B	23.3 B	
Tested By Group Symbol	ASTM D 2487	John Platt	John Platt ML	John Platt	John Platt SM	John Platt	John Platt SM	
Group Name Tested By	ASTM D 2407		Silt John Platt		Silty sand John Platt		Silty sand John Platt	
Dispersion device Dispersion time (min) Shape Hardness	ASTM D 422		Dispersant by hand					
Method Sample Obtained While Group Name Group Symbol Composite Sieving Used	ASTM D 6913				Oven-Dried Silty sand SM No			
Dispersion Method Prior Testing					Dispersant by hand			
Percent Gravel Percent Sand Percent Fines (Silt/Clay) Group Symbol	LMA (Internal Met	hod)					0 53 47 SM	

ATL	>					AI	aska Testlab - Anchorage 4040 B Street, Suite 102 Anchorage, AK 99503 Phone: 907-205-1987 Fax: 907-782-4409 info@alaskatestlab.com	
Materi	ial Test F	Report			Report No: ASM:21-0707 Issue No: 3			
Client:	CRW Engineering 3940 Arctic Blvd., S Anchorage, AK 995	Group, LLC CC	SI SI	aria Kampsen teven Halcomb	The results contained b	below pertain only to the items tested be ulil, without the prior written approval of		
Project:	10149.00 - Norann ,					Oscar Lage Laboratory Supervisor 6/3/2021		
Sample I	Details							
Sample ID Client Sam Date Samp	ple ID	21-0707-5 BH-02 Sample		21-0707-S08 BH-02 Sample 6				
	st Results							
Description		Method	\ -		Results		Limits	
Water Conte Method	nt (%)	ASTM D 2216 29).7 В	23.0 B				
Tested By		John Pl	att	John Platt				
Commen	ts							
N/A								

ATL

		st Repor			Report No: MAT:21-07 ssue No: 2		
Client: CRW Engineering Group, LLC 3940 Arctic Blvd., Ste. 300 Anchorage, AK 99503		CC: Maria I Steven	CC: Maria Kampsen Steven Halcomb				
oject:	10149.00 -	Norann					
	,			В	eviewed By: Oscar Lage		
					itle: Laboratory Sup	ervisor	
				D	ate: 6/8/2021		
Sample	e Details			Other Test F	Results		
ample ID		21-0707-S02		Description	Method	Result	Limit
lient Sar		BH-02 Sample 2		Water Content (%	%) ASTM D		
pecificat	tion	Sieve		Method		B John Diatt	
				Tested By Date Tested		John Platt 5/18/2021	
				Group Symbol	ASTM D		
				Group Name		Silt	
			Tested By		John Platt		
				Date Tested		5/20/2021	
article	Size Dis	tribution			Method: A	STM D 422	
	Size Dis	tribution			Method: A Date Tested: 5		
		tribution			Date Tested: 5		
% Pa		tribution			Date Tested: 5 Tested By: J	/20/2021 ohn Platt	
% Pa 100 90		tribution			Date Tested: 5 Tested By: J Sieve Size	/20/2021 ohn Platt % Passing	Limits
% Pa		tribution			Date Tested: 5 Tested By: J Sieve Size 3in	/20/2021 ohn Platt % Passing 100	Limits
% Pa 100 90		tribution			Date Tested: 5 Tested By: J Sieve Size 3in 2in	/20/2021 ohn Platt % Passing 100 100	Limits
% Pa 100 90 80 70		tribution			Date Tested: 5 Tested By: J Sieve Size 3in	/20/2021 ohn Platt % Passing 100	Limits
% Pa 100 90 80		tribution			Date Tested: 5 Tested By: J Sieve Size 3in 2in 1½in	/20/2021 ohn Platt % Passing 100 100 100	Limits
% Pa 100 90 80 70		tribution			Date Tested: 5 Tested By: J Sieve Size 3in 2in 1½in 1in ¾in ½in	/20/2021 ohn Platt % Passing 100 100 100 100 100 100	Limits
% Pa 100 90 80 70 60		tribution			Date Tested: 5 Tested By: J Sieve Size 3in 2in 1½in 1in ¾in 1½in 3/8in	/20/2021 ohn Platt % Passing 100 100 100 100 100 100 100	Limits
% Pa 100 90 80 70 60		tribution			Date Tested:5Tested By:JSieve Size3in2in1½in1in¾in½in3/8inNo.4	/20/2021 ohn Platt % Passing 100 100 100 100 100 100 99	Limits
% Pa 100 90 80 60 50		tribution			Date Tested: 5 Tested By: J Sieve Size 3in 2in 1½in 1in ¾in ½in 3/8in No.4 No.10	/20/2021 ohn Platt % Passing 100 100 100 100 100 100 99 99	Limits
% Pa 100 90 80 70 60 50 40		tribution			Date Tested:5Tested By:JSieve Size3in2in1½in1in¾in½in3/8inNo.4No.10No.20	/20/2021 ohn Platt % Passing 100 100 100 100 100 99 99 99	Limits
% Pa 100 90 80 70 60 50 40		tribution			Date Tested: 5 Tested By: J Sieve Size 3in 2in 1½in 1in ¾in ½in 3/8in No.4 No.10	/20/2021 ohn Platt % Passing 100 100 100 100 100 100 99 99	Limits
% Pa 100 90 80 70 60 50 40 30 20		tribution			Date Tested: 5 Tested By: J Sieve Size 3in 2in 1½in 1in ¾in ½in 3/8in No.4 No.10 No.20 No.40	/20/2021 ohn Platt % Passing 100 100 100 100 100 99 99 99 99	Limits
% Pa 100 90 80 70 60 50 40 - 30		tribution			Date Tested: 5 Tested By: J Sieve Size 3in 3in 2in 1½in 1in ¾in ½in 3/8in No.4 No.10 No.20 No.40 No.60 No.100 No.200	/20/2021 ohn Platt % Passing 100 100 100 100 100 99 99 99 99 99 99 99 99	Limits
% Pa 100 90 80 60 50 30 10 10	Issing				Date Tested: 5 Tested By: J Sieve Size 3in 3in 2in 1½in 1in ¾in ½in 3/8in No.4 No.10 No.20 No.40 No.60 No.100 No.200 Finer No.200 (75)	/20/2021 ohn Platt % Passing 100 100 100 100 100 99 99 99 99 99 99 99 99 99	Limits
% Pa 100 90 80 60 50 30 10 10			00.20 10.40 0.60 0.60		Date Tested: 5 Tested By: J Sieve Size 3in 2in 1½in 1½in 3/8in No.4 No.10 No.20 No.40 No.60 No.100 No.200 Finer No.200 (75	/20/2021 ohn Platt % Passing 100 100 100 100 100 99 99 99 99 99 99 99 99 99 99 99 99 9	Limits
% Pa 100 90 80 60 50 30 10 10	Issing		No.20 No.40 No.100	No.200 23.9 µm 16.3 µm 16.4 µm	Date Tested: 5 Tested By: J Sieve Size 3in 2in 1½in 1½in 3/8in No.4 No.10 No.20 No.40 No.60 No.100 No.200 Finer No.200 (75	/20/2021 ohn Platt % Passing 100 100 100 100 100 99 99 99 99 99 99 99 99 99	Limits

Comments

Frost Class: F4

ATL	

				info@alaskatestlab.co
	rial Test Report		Report No: MAT:21-0707-S02 Issue No: 2	
Client:	CRW Engineering Group, LLC 3940 Arctic Blvd., Ste. 300 Anchorage, AK 99503	CC: Maria Kampsen Steven Halcomb	The results contained below pertain only to the items tested belor reproduced, except in full, without the prior written approval of Al	w. This report should not be aska Testlab or the agency.
Project:	10149.00 - Norann			
	,		Reviewed By: Oscar Lage Title: Laboratory Supervisor Date: 6/8/2021	
Other Tes	st Results			
Descripti		Method	Result	Limits
Dispersior Dispersior Shape Hardness	n time (min)	ASTM D 422	Dispersant by hand	

Frost Class: F4

ATL

viater	ial Te	st Report	Issue	ort No: MAT:21-0707-S04 e No: 1				
Client: CRW Engineering Group, LLC 3940 Arctic Blvd., Ste. 300 Anchorage, AK 99503				The results contained below pertain only to the items tested below. This report should reproduced, except in full, without the prior written approval of Alaska Testlab or the ag				
Project:	oject: 10149.00 - Norann							
	,		Review Title: Date:	ved By: Oscar Lage Laboratory Supervisor 6/2/2021				
Sample	Details		Other Test Res					
Sample ID Client Sam Specificati	ple ID	21-0707-S04 BH-02 Sample 3B Sieve	Description Water Content (%) Method Tested By Date Tested Method Sample Obtained Whi Group Name Group Symbol Composite Sieving Us Dispersion Method Prior Testing	Silty sand SM				
Particle \$	Size Dis	tribution		Method: ASTM D 6913				
% Pas: 100 ⊺ · ·	sing			Date Tested: 5/24/2021 Tested By: John Platt				
90 - · · · 80 - · · · 60 - · · · 50 - · · · 40 - · · · 30 - · · ·				Sieve Size% PassingLimits3in (75.0mm)1002in (50.0mm)1001½in (37.5mm)1001½in (37.5mm)100½in (19.0mm)100¾in (19.0mm)100¾in (12.5mm)100¾in (9.5mm)100No.4 (4.75mm)100No.10 (2.0mm)100No.20 (850µm)100No.40 (425µm)99No.60 (250µm)92No.100 (150µm)49No.200 (75µm)19				

Material Test F	Rep	info@alaskatestlab.cc Report No: ASM:21-0708 Issue No: 3						
Client: CRW Engineering 3940 Arctic Blvd., S Anchorage, AK 995	Group, LLC Ste. 300	CC: M	C: Maria Kampsen Steven Halcomb					
Project: 10149.00 - Norann								
3				Povia	wed By: Osc	ar Lago		
				Title: Date:	Lab	oratory Superv 2021	isor	
Sample Details								
Sample ID Client Sample ID Date Sampled		21-0708-S01 BH-03 Sample 1	21-0708-S02 BH-03 Sample 2	21-0708-S03 BH-03 Sample 3	21-0708-S0 4 BH-03 Sample 4	21-0708-S05 BH-03 Sample 5A	21-0708-S06 BH-03 Sample 5B	
Particle Size Distribu	tion							
Method:	Sieve Size	100		% Pa	assing			Limits
ASTM D 6913	75.0mm 50.0mm	100 100						
Description: Particle size distribution	37.5mm	89						
Particle size distribution gradation) of soils using sieve	25.0mm	83						
analysis.	19.0mm	79						
Drying by:	12.5mm	72						
	9.5mm	67						
Nashed:	4.75mm	56						
Sample Washed	2.0mm	45						
	850µm	34						
	425µm	25 17						
	250µm 150µm	17						
	75µm	8						
	Finer 75µm	7.7						
Other Test Results								
Description	Method			Res	ults			Limits
Nater Content (%)	ASTM D 2216	3.5	30.7	8.5	6.8	29.0	33.0	
Method		В	В	В	В	В	В	
Tested By		John Platt	John Platt	John Platt SM	John Platt	John Platt	John Platt	
Group Symbol Group Name	ASTM D 2487	SP-SM orly graded sand with		Silty sand				
Method	ASTM D 6913	eilt and draval		Only Sand				
Sample Obtained While		Oven-Dried						
Group Name	P	oorly graded sand with						
Group Symbol		silt and gravel						
Composite Sieving Used		No						
Dispersion Method		Dispersant by hand						
Prior Testing				^				
Percent Gravel	LMA (Internal Me	thod)		0 85				
Percent Sand Percent Fines (Silt/Clay)				85 15				
Group Symbol				SM				
comments								

Alaska Testlab - Anchorage

ATL

Material Test Report						Report No: ASM:21-0708 Issue No: 3			
Client:	Client: CRW Engineering Group, LLC 3940 Arctic Blvd., Ste. 300 Anchorage, AK 99503		CC: Maria Kampsen Steven Halcomb		The results contained below pertain only to the items tested below. This report should not be reproduced, except in full, without the prior written approval of Alaska Testlab or the agency.				
Project: 10149.00 - Norann									
	,				Revie Title: Date:		ar Lage oratory Superv 2021	isor	
Sample	Details								
Sample ID Client Sam Date Samp			21-0708-S01 BH-03 Sample 1	21-0708-S02 BH-03 Sample 2	21-0708-S03 BH-03 Sample 3	21-0708-S04 BH-03 Sample 4	21-0708-S05 BH-03 Sample 5A	21-0708-S06 BH-03 Sample 5B	
Other Te	est Results								
Descriptio	n	Method			Res	ults			Limits
Material retained of Method of R Grooving To Specimen p Drying Meth Special sele Rolling Meth As Received W	ool Type reparation method od ction process nod for PL /ater Content (%) Device Type	ASTM D 4318	8				N/A Plastic Dry Air N/A Hand 29.0 Mechanical N/A NP NP Multipoint (A) <u>Nathan Lervold</u>		

				Alaska Testlab - Anchorage 4040 B Street, Suite 102 Anchorage, AK 99503 Phone: 907-205-1987 Fax: 907-782-4409 info@alaskatestlab.com			
Report			Report No: ASM:21-0708 Issue No: 3				
te. 300	CC: Maria Steve	Kampsen n Halcomb	The results contained below pertain on	ly to the items tested below. This report should not be rior written approval of Alaska Testlab or the agency.			
			Reviewed By: Oscar Lag Title: Laborator Date: 6/3/2021	ge ry Supervisor			
tion							
Sieve Size 75.0mm 50.0mm 37.5mm 25.0mm 19.0mm 12.5mm 9.5mm 4.75mm 2.0mm 850µm	100 100 100 100 99 98 94 93 91		% Passing	Limits			
250μm 150μm 75μm Finer 75μm	88 84 76 58 58.1						
	26.2	27.6	Results	Limits			
John	B Platt J	В					
Sanc	y silt ML No						
	te. 300 03 21-0706 ВH-03 Sam 50.0mm 37.5mm 25.0mm 19.0mm 12.5mm 9.5mm 4.75mm 25.0mm 19.0mm 12.5mm 9.5mm 4.75mm 2.0mm 850µm 4.25µm 250µm 150µm 75µm Finer 75µm Finer 75µm Finer 75µm ASTM D 2216 John ASTM D 2487 Sand ASTM D 6913 Oven-E Sand	Siroup, LLC CC: Maria Steve 03 21-0708-S07 21 BH-03 Sample 6A BH-03 Sieve Size 75.0mm 100 75.0mm 100 50.0mm 100 50.0mm 100 37.5mm 100 25.0mm 100 12.5mm 99 9.5mm 98 4.75mm 94 2.0mm 93 850µm 91 425µm 88 250µm 84 150µm 76 75µm 58 Finer 75µm 58.1 58 1 Method 26.2 B John Platt J ASTM D 2487 ML Sandy silt ASTM D 6913 Oven-Dried Oven-Dried Sandy silt ML Sandy silt 1	Group, LLC CC: Maria Kampsen Steven Halcomb te. 300 03 03 21-0708-S07 21-0708-S08 BH-03 Sample 6A BH-03 Sample 6B Sieve Size 9 75.0mm 100 50.0mm 100 37.5mm 100 25.0mm 100 12.5mm 99 9.5mm 98 4.75mm 94 2.0mm 93 850µm 91 425µm 88 250µm 84 150µm 58.1 Method 26.2 ASTM D 2216 26.2 27.6 B B B John Platt John Platt John Platt ASTM D 2487 ML Sandy silt ASTM D 6913 Oven-Dried Sandy silt ML No No No	Site POIL Issue No: 3 Group, LLC te. 300 03 CC: Maria Kampsen Steven Halcomb Thereads contained beam pertain or reproduced, except in hall, without the produced, except in hall			

AIL

		est Re				Issue N			
lient:	CRW Engineering Group, LLC 3940 Arctic Blvd., Ste. 300 Anchorage, AK 99503							is tested below. This report approval of Alaska Testlab or	should not be the agency.
roject:	10149.00	- Norann							
	,					Reviewed	By: Oscar Lage		
						Title: Date:	Laboratory Super 6/2/2021	visor	
Sample	Details				Other 1	est Resul	ts		
Sample ID)	21-0708-5			Description	on	Method	Result	Limit
Client San Specificat		BH-03 Sa Sieve	mple 1		Water Cor Method	ntent (%)	ASTM D 22	216 3.5 B	
specificat	.1011	Sieve			Tested By			John Platt	
					Date Test	ed		5/18/2021	
					Method Sample O	btained While	ASTM D 69	913 Oven-Dried	
					Group Na	me Poo	rly graded sand with	silt and gravel	
					Group Syl		4	SP-SM	
					Dispersion	e Sieving Useo n Method		No ersant by hand	
					Prior Test		·	,	
article	Size Dis	stribution	1						
							Method: AS	TM D 6913	
% D -							Date Tested: 5/2	2/2021	
% Pas 100 ⊤ · ·								than Lervold	
-	\setminus								
90+	\sim						Sieve Size	% Passing	Limits
80 - · ·		\sim	••••••••••	•••••			3in (75.0mm)	100	
70 - • •							2in (50.0mm) 1½in (37.5mm)	100 89	
60 + · ·		N	、				1in (25.0mm)	83	
-							³ / ₄ in (19.0mm)	79	
50 - · ·	· · · · · · · · · · · · · · · ·	·····	\sim	••••		••••	½in (12.5mm) 3/8in (9.5mm)	72 67	
40 - • •		·····		<			No.4 (4.75mm)	56	
30							No.10 (2.0mm) No.20 (850µm)	45 34	
-					\sim		No.40 (425µm)	25	
²⁰		*********			\sim		No.60 (250µm)	17	
10 - • •		•••••		• • • • • • • • • • • •		<u>~</u> ~~	No.100 (150µm) No.200 (75µm)	11 8	
٥Ľ							Finer 75µm	7.7	
	75.0mm 50.0mm 37.5mm	25.0mm 19.0mm 12.5mm 9.5mm	4.75mm 2.0mm	850µm	425µm 250µm 150µm	75µm			
	76 50 37	12 12 13							
Commer	nts								

N/A

AIL

<i>laterial</i> 10	est Report	Report No: MAT:21-0708-	S07				
lient: CRW Eng 3940 Arct		CC: Maria Kampsen Steven Halcomb	The results contained below pertain only to the items te	ssue No: 1 he results contained below pertain only to the items tested below. This report should not be sproduced, except in full, without the prior written approval of Alaska Testlab or the agency.			
roject: 10149.00	- Norann						
3			Reviewed By: Oscar Lage				
			Title: Laboratory Supervis	sor			
			Date: 6/2/2021				
Sample Details		Other Test					
Sample ID Client Sample ID Specification	21-0708-S07 BH-03 Sample 6A Sieve	Description Water Content Method Tested By	(%) ASTM D 221	B John Platt			
		Date Tested Method Sample Obtain Group Name Group Symbol Composite Sie Dispersion Met Prior Testing	ving Used	5/18/2021 3 Oven-Dried Sandy silt ML No rsant by hand			
article Size Di	stribution						
			Method: AST	M D 6913			
% Passing			Date Tested: 5/22/ Tested By: Natha	/2021 an Lervold			
90			Sieve Size % 3in (75.0mm) 2in (50.0mm) 1½in (37.5mm)	6 Passing Limits 100 100 100			

N/A

3940 Arct Anchorag Project: 10149.00 Project: 10149.00 g g Sample ID Client Sample ID Date Sampled G Particle Size Di Method: Analysis of Particle Size Distribution in Soils. Si Particles >75µm, Hydr Drying by: Washed: Sample Washed Other Test Rest Description Washed: Sample Washed Other Test Rest Description Water Content (%) Method Group Symbol Group Name Tested By Percent Gravel Percent Sand	gineering G stic Blvd., S ge, AK 995) - Norann) - Norann istribut	ion, LLC te. 300 03 21 BH ion Sieve Size 3in (75.0mm) 2in (50.0mm) 1½in (37.5mm) 1in (25.0mm) 1½in (12.5mm) 1in (25.0mm) ½in (12.5mm) 3/8in (9.5mm) No.4 (4.75mm) No.10 (2.0mm) No.40 (425µm) No.40 (425µm) No.60 (250µm) No.100	L-0709-S01 -04 Sample 1)))	Maria Kampsen Steven Halcomb 21-0709-S02 BH-04 Sample 2 100 100 100 100 100 100 100 100 100 10	The resu reproduc Revie Title: Date: 21-0709-S03 BH-04 Sample 3	ewed By: Osca Labo	ar Lage pratory Superv 2021 21-0709-S05	tested below. This repo proval of Alaska Testlab /isor 21-0709-S06 BH-04 Sample 6A	rt should not be or the agency.
Sample Details Sample ID Client Sample ID Date Sampled Particle Size Di Method: ASTM D 422 Description: Analysis of Particle Siz Distribution in Soils. Si Particles >75µm, Hydr Drying by: Washed: Sample Washed Other Test Ress Description Water Content (%) Method Group Symbol Group Symbol Group Name Tested By Percent Gravel Percent Sand	istribut	BH Sieve Size 3in (75.0mm) 2in (50.0mm) 1½in (37.5mm) 1½in (37.5mm) ¾in (19.0mm) ½in (12.5mm) 3/8in (9.5mm) No.4 (4.75mm) No.10 (2.0mm) No.20 (850µm) No.40 (425µm) No.60 (250µm) No.100	-04 Sample 1))))))	BH-04 Sample 2	21-0709-S03 BH-04 Sample 3	Labo 6/3/2 21-0709-S04 BH-04 Sample 4	2021 21-0709-S05	21-0709-S06	Limits
Sample ID Client Sample ID Date Sampled Particle Size Di Method: ASTM D 422 Description: Analysis of Particle Siz Distribution in Soils. Si Particles >75µm, Hydr Drying by: Washed: Sample Washed Other Test Res Description Water Content (%) Method Group Symbol Group Symbol Group Name Tested By Percent Gravel Percent Sand	istribut ze Sieving for	BH Sieve Size 3in (75.0mm) 2in (50.0mm) 1½in (37.5mm) 1½in (37.5mm) ¾in (19.0mm) ½in (12.5mm) 3/8in (9.5mm) No.4 (4.75mm) No.10 (2.0mm) No.20 (850µm) No.40 (425µm) No.60 (250µm) No.100	-04 Sample 1))))))	BH-04 Sample 2	21-0709-S03 BH-04 Sample 3	Labo 6/3/2 21-0709-S04 BH-04 Sample 4	2021 21-0709-S05	21-0709-S06	Limits
Sample ID Client Sample ID Date Sampled Particle Size Di Method: ASTM D 422 Description: Analysis of Particle Siz Distribution in Soils. Si Particles >75µm, Hydr Drying by: Washed: Sample Washed Other Test Res Description Water Content (%) Method Group Symbol Group Symbol Group Name Tested By Percent Gravel Percent Sand	istribut ze Sieving for	BH Sieve Size 3in (75.0mm) 2in (50.0mm) 1½in (37.5mm) 1½in (37.5mm) ¾in (19.0mm) ½in (12.5mm) 3/8in (9.5mm) No.4 (4.75mm) No.10 (2.0mm) No.20 (850µm) No.40 (425µm) No.60 (250µm) No.100	-04 Sample 1))))))	BH-04 Sample 2	BH-04 Sample 3	BH-04 Sample 4			Limits
Client Sample ID Date Sampled Particle Size Di Method: ASTM D 422 Description: Analysis of Particle Siz Distribution in Soils. Si Particles >75µm, Hydr Drying by: Washed: Sample Washed Other Test Res Description Water Content (%) Method Group Symbol Group Name Tested By Percent Gravel Percent Sand	ze Sieving for	BH Sieve Size 3in (75.0mm) 2in (50.0mm) 1½in (37.5mm) 1½in (37.5mm) ¾in (19.0mm) ½in (12.5mm) 3/8in (9.5mm) No.4 (4.75mm) No.10 (2.0mm) No.20 (850µm) No.40 (425µm) No.60 (250µm) No.100	-04 Sample 1))))))	BH-04 Sample 2	BH-04 Sample 3	BH-04 Sample 4			Limits
Particle Size Di Method: ASTM D 422 Description: Analysis of Particle Siz Distribution in Soils. Si Particles >75µm, Hydr Drying by: Washed: Sample Washed Other Test Res Description Water Content (%) Method Group Symbol Group Name Tested By Percent Gravel Percent Sand	ze Sieving for	Sieve Size 3in (75.0mm) 2in (50.0mm) 1½in (37.5mm) 1in (25.0mm) ¾in (19.0mm) ¼in (12.5mm) 3/8in (9.5mm) No.4 (4.75mm) No.10 (2.0mm) No.20 (850µm) No.40 (425µm) No.60 (250µm) No.100)))	100 100 100 100 100 99 98 95 86	% Pa	assing			Limits
ASTM D 422 Description: Analysis of Particle Siz Distribution in Soils. Si Particles >75µm, Hydr Drying by: Washed: Sample Washed Other Test Res Description Water Content (%) Method Group Symbol Group Symbol Group Name Tested By Percent Gravel Percent Sand	Sieving for	3in (75.0mm) 2in (50.0mm) 1½in (37.5mm) 1in (25.0mm) ¾in (19.0mm) ½in (12.5mm) 3/8in (9.5mm) No.4 (4.75mm) No.10 (2.0mm) No.20 (850µm) No.40 (425µm) No.60 (250µm) No.100)))	100 100 100 100 100 99 98 95 86	% Pa	assing			Limits
Description: Analysis of Particle Siz Distribution in Soils. Si Particles >75µm, Hydr Drying by: Washed: Sample Washed Other Test Res Description Water Content (%) Method Group Symbol Group Name Tested By Percent Gravel Percent Sand	Sieving for	2in (50.0mm) 11⁄₂in (37.5mm) 1in (25.0mm) 3⁄₄in (19.0mm) 1⁄₂in (12.5mm) 3/8in (9.5mm) No.4 (4.75mm) No.10 (2.0mm) No.20 (850µm) No.40 (425µm) No.60 (250µm) No.100)))	100 100 100 100 100 99 98 95 86					
Analysis of Particle Siz Distribution in Soils. Si Particles >75µm, Hydr Drying by: Washed: Sample Washed Other Test Ress Description Water Content (%) Method Group Symbol Group Name Tested By Percent Gravel Percent Sand	Sieving for	1 ¹ / ₂ in (37.5mm) 1in (25.0mm) ³ / ₄ in (19.0mm) ¹ / ₂ in (12.5mm) 3/8in (9.5mm) No.4 (4.75mm) No.10 (2.0mm) No.20 (850μm) No.40 (425μm) No.60 (250μm) No.100)))	100 100 100 100 99 98 95 86					
Distribution in Soils. Si Particles >75µm, Hydr Drying by: Washed: Sample Washed Other Test Res Description Water Content (%) Method Group Symbol Group Name Tested By Percent Gravel Percent Sand	Sieving for	1in (25.0mm) ³ ⁄ ₄ in (19.0mm) ¹ ⁄ ₂ in (12.5mm) 3/8in (9.5mm) No.4 (4.75mm) No.10 (2.0mm) No.20 (850μm) No.40 (425μm) No.60 (250μm) No.100)))	100 100 100 99 98 95 86					
Particles >75µm, Hydr Drying by: Washed: Sample Washed Other Test Res Description Water Content (%) Method Group Symbol Group Name Tested By Percent Gravel Percent Sand		³ ⁄ ₄ in (19.0mm) ¹ ⁄ ₂ in (12.5mm) 3/8in (9.5mm) No.4 (4.75mm) No.10 (2.0mm) No.20 (850μm) No.40 (425μm) No.60 (250μm) No.100)))	100 100 99 98 95 86					
Drying by: Washed: Sample Washed Other Test Res Description Water Content (%) Method Group Symbol Group Symbol Group Name Tested By Percent Gravel Percent Sand		¹ / ₂ in (12.5mm) 3/8in (9.5mm) No.4 (4.75mm) No.10 (2.0mm) No.20 (850μm) No.40 (425μm) No.60 (250μm) No.100)))	100 99 98 95 86					
Washed: Sample Washed Other Test Res Description Water Content (%) Method Group Symbol Group Name Tested By Percent Gravel Percent Sand		No.4 (4.75mm) No.10 (2.0mm) No.20 (850µm) No.40 (425µm) No.60 (250µm) No.100)))	99 98 95 86					
Sample Washed Other Test Res Description Water Content (%) Method Group Symbol Group Name Tested By Percent Gravel Percent Sand		No.10 (2.0mm) No.20 (850µm) No.40 (425µm) No.60 (250µm) No.100)))	98 95 86					
Other Test Res Description Water Content (%) Method Group Symbol Group Name Tested By Percent Gravel Percent Sand		No.20 (850µm) No.40 (425µm) No.60 (250µm) No.100)	95 86					
Other Test Res Description Water Content (%) Method Group Symbol Group Name Tested By Percent Gravel Percent Sand		No.40 (425µm) No.60 (250µm) No.100)	86					
Description Water Content (%) Method Group Symbol Group Name Tested By Percent Gravel Percent Sand		No.60 (250µm) No.100							
Description Water Content (%) Method Group Symbol Group Name Tested By Percent Gravel Percent Sand		No.100)	14					
Description Water Content (%) Method Group Symbol Group Name Tested By Percent Gravel Percent Sand				56					
Description Water Content (%) Method Group Symbol Group Name Tested By Percent Gravel Percent Sand		No.200 (75µm)	۱	56 41					
Description Water Content (%) Method Group Symbol Group Name Tested By Percent Gravel Percent Sand		Finer No.200)	41					
Water Content (%) Method Group Symbol Group Name Tested By Percent Gravel Percent Sand	ults								
Method Group Symbol Group Name Tested By Percent Gravel Percent Sand		Method			Resi				Limits
Group Symbol Group Name Tested By Percent Gravel Percent Sand		ASTM D 2216	2.9 B	10.9 B	9.2 B	8.6 B	13.9 B	3.6 B	
Group Name Tested By Percent Gravel Percent Sand		ASTM D 2487	GP-GM	SM	B SM	D	U	D	
Tested By Percent Gravel Percent Sand			graded gravel with	Silty sand	Silty sand				
Percent Gravel Percent Sand		J	silt and sand lohn Platt	Only cane	011.9 00				
Percent Sand		LMA (Internal Metho			6				
			44		72				
Percent Fines (Silt/Clay	ıy)		7		22				
Group Symbol			GP-GM		SM				
Dispersion device		ASTM D 422		Dispersant by hand					
Dispersion time (min)									
Shape Hardness									
Haluness									

ATL			4 i	a Testlab - Anchorage 040 B Street, Suite 102 Anchorage, AK 99503 Phone: 907-205-1987 Fax: 907-782-4409 nfo@alaskatestlab.com
Mater	ial Test Report	t	Report No: ASM:21-0709 Issue No: 3	
Client:	CRW Engineering Group, LLC 3940 Arctic Blvd., Ste. 300 Anchorage, AK 99503	CC: Maria Kampsen Steven Halcomb	The results contained below pertain only to the items tested below. reproduced, except in full, without the prior written approval of Alask	This report should not be a Testlab or the agency.
Project:	10149.00 - Norann ,			
			Reviewed By:Oscar LageTitle:Laboratory SupervisorDate:6/3/2021	
Sample I	Details			
Sample ID Client Sam Date Samp	ple ID led	21-0709-S07 BH-04 Sample 6B		
Other Te	st Results			
Description Water Conte		16 18.7	Results	Limits
Commen	ts			
N/A				

ATL	

							Report No: MAT:21-0709-S02 Issue No: 2			
39 Ar	40 Arctic l nchorage,	V Engineering Group, LLC CC: Maria Kampsen O Arctic Blvd., Ste. 300 horage, AK 99503		reproduced, ex	The results contained below pertain only to the items tested below. This report should not be reproduced, except in full, without the prior written approval of Alaska Testlab or the agency.					
roject: 10)149.00 - N	Iorann								
3						Reviewed	I By: Oscar Lage			
						Title:	Laboratory			
						Date:	6/8/2021			
Sample D	etails		-			est Resu		_		
Sample ID Client Sample	ם ו	21-0709-S0 BH-04 Sam			Description Water Con		Metho ASTM	od I D 2216	Result 10.9	Limits
pecification		Sieve	אוב ד		Method	nom (70)	AGTIV		10.9 B	
					Group Syr		ASTM	I D 2487	SM	
					Group Na	ne	ΛΟΤΜ	<u>ع</u> ا D 422	Silty sand	
					Dispersior	n device	ASTM	Dispersan	t by hand	
					Dispersior	time (min)			, <u> </u>	
					Shape					
					Hardness					
article Siz	ze Dist	ribution					Method:	ASTM D	422	
Particle Siz		ribution								
% Passing 100		ribution					Method: Date Tested: Tested By:		1	
% Passing		ribution					Date Tested: Tested By: Sieve Size	: 5/20/202 John Pla	1 tt ssing	Limits
% Passing		ribution					Date Tested: Tested By: Sieve Size ³ⁱⁿ	: 5/20/202 John Pla	1 tt ssing 100	Limits
% Passing		ribution				· · · · · · · ·	Date Tested: Tested By: Sieve Size 3in 2in	: 5/20/202 John Pla	1 tt ssing 100 100	Limits
% Passing		ribution					Date Tested: Tested By: Sieve Size 3in 2in 1½in 11/2in 1in	: 5/20/202 John Pla	1 tt ssing 100 100 100 100	Limits
% Passing 100 90 80 70 60		ribution				· · · · · · · · · · · · · · · · · · ·	Date Tested: Tested By: Sieve Size 3in 2in 1½in 1in ¾in	: 5/20/202 John Pla	1 tt ssing 100 100 100 100 100	Limits
% Passing		ribution				• • • • • • • • • • • • • • • • • • •	Date Tested: Tested By: Sieve Size 3in 2in 1½in 11/2in 1in	: 5/20/202 John Pla	1 tt ssing 100 100 100 100	Limits
% Passing 100		ribution					Date Tested: Tested By: Sieve Size 3in 2in 1½in 1½in 1¼in ½in 3/8in No.4	: 5/20/202 John Pla	1 tt ssing 100 100 100 100 100 100 99	Limits
% Passing 100		ribution					Date Tested: Tested By: Sieve Size 3in 2in 1½in 1½in 1½in 3/8in No.4 No.10	: 5/20/202 John Pla	1 tt ssing 100 100 100 100 100 100 99 98	Limits
% Passing 100		ribution					Date Tested: Tested By: Sieve Size 3in 2in 1½in 1½in 3/4in ½in 3/8in No.4 No.10 No.20	: 5/20/202 John Pla	1 tt ssing 100 100 100 100 100 100 99 98 95	Limits
% Passing 100		ribution					Date Tested: Tested By: Sieve Size 3in 2in 1½in 1in ¾in ½in 3/8in No.4 No.10 No.20 No.40 No.60	: 5/20/202 John Pla	1 tt ssing 100 100 100 100 100 100 99 98 95 86 72	Limits
% Passing 100 - · · · · · · · · · · · · · · · · · ·		ribution					Date Tested: Tested By: Sieve Size 3in 2in 1½in 1in ¾in ½in 3/8in No.4 No.10 No.20 No.40 No.60 No.100	: 5/20/202 John Pla	1 tt ssing 100 100 100 100 100 100 100 99 98 95 86 72 56	Limits
% Passing 100 - · · · · · · · · · · · · · · · · · ·		ribution					Date Tested: Tested By: Sieve Size 3in 2in 1½in 1in ¾in ½in 3/8in No.4 No.10 No.20 No.40 No.60 No.100 No.200	: 5/20/202 John Pla % Pa	1 tt ssing 100 100 100 100 100 100 99 98 95 86 72 56 41	Limits
% Passing 100 - · · · · · · · · · · · · · · · · · ·							Date Tested: Tested By: Sieve Size 3in 2in 1½in 1in ¾in ½in 3/8in No.4 No.10 No.20 No.40 No.60 No.100 No.200 Finer No.200	: 5/20/202 John Pla % Pa	1 tt ssing 100 100 100 100 100 100 100 99 98 95 86 72 56	Limits
% Passing 100			No.10 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10	No.60 No.60	No.200	20.7 Jm 20.7 J	Date Tested: Tested By: Sieve Size 3in 2in 1½in 1in ¾in ½in 3/8in No.4 No.10 No.20 No.40 No.60 No.100 No.200	: 5/20/202 John Pla % Pa	1 tt ssing 100 100 100 100 100 100 100 99 98 95 86 72 56 41 40.4	Limits

Frost Class: F3

ASTM D 6913 75.0mm 100 100 Description: 50.0mm 100 100 gradation) of soils using sieve analysis. 12.5mm 66 100 Brying by: 12.5mm 66 100 9.5mm 61 000 Washed: 2.0mm 39 97 Sample Washed 2.0mm 100 100 Sample Washed 2.0mm 39 97 4250µm 16 97 150µm 10 655 Chter Test Results 100 Method 6.1 22.1 41.4 28.5 30.9 30.7 Finer 75µm 6.4 85.8 Chter Test Results 100 Mathod 87 Finer 75µm 6.4 85.8 Chter Test Results 100 Mathod 87 Finer 75µm 6.4 85.8 Chter Test Results 100 Mathod 95 Tested By 100 Froup Name 100 Forup Symbol ASTM D 2216 6.1 22.1 41.4 28.5 30.9 30.7 Method 9 Sample Obtained While 0 Group Symbol ASTM D 2487 GP-GM Corup Symbol ASTM D 2487 GP-GM Corup Symbol 0 Ger Cit Group Symbol 0 Ger Cit Group Symbol 0 Forup Symbol 0 Freide Duits 100 Parent Fines (SilvClay) 100 Shape Hardness Percent Fines (SilvClay) 93 Group Symbol 0 Shape 1 Percent Fines (SilvClay) 93 Group Symbol 0 Ger Silvclay 100 Silv 0 Silv 0	Motorial Test				Rei	oort No: AS	M:21-0711		ix: 907-782-44 laskatestlab.c		
3640 Actic Bide, Ste. 300 Steen Hacors Anchorage, AK 99503 Project: 10149.00 - Norann . Reviewed Dy: Oscar Lage Title: Classing Low Sample D Clent Sample ID 2:4/11.901 Date: 6:3/2012 Date: 6:3/2012 Date: 0:1/11.902 2:4/11.901 2:4/11.902 Date: 0:1/11.902 Date: 0:1/11.902 Date: 0:1/11.902 Date: 0:1/11.903 Dat					Iss	ue No: 3					
Reviewed By: Oscial Lage Client Sample ID 21:0711-S01 21:0711-S02 21:0711-S03 21:0711-S05 21:0	3940 Arctic Blvd., S	ite. 300	CC:	Maria Kampsen Steven Halcomb	The res reprodu	sults contained below pe uced, except in full, with	rtain only to the items out the prior written app	tested below. This repo proval of Alaska Testlab	rt should not be or the agency.		
Title: Laboratory Supervisor Date: 6/3/2021 Sample ID 21-0711-S01 21-0711-S02 21-0711-S03 21-0711-S03 21-0711-S03 21-0711-S03 21-0711-S03 21-0711-S05 SU-0711-S05 SU-0711-S05 <th <="" colspan="2" su-0711-s05<="" th=""><th>Project: 10149.00 - Norann</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th>	<th>Project: 10149.00 - Norann</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		Project: 10149.00 - Norann								
Sample Details Sample ID 21-0711-S01 21-0711-S03 21-0711-S03 21-0711-S03 21-0711-S05	1				Title	Labo	pratory Superv	isor			
Sample ID Client Sample UD Date Sample JD Date Sample JD Particle Size Distribution 21-0711-801 21-0711-802 21-0711-802 21-0711-803 21-0711-	Somalo Dotoilo					. 0/3/2	2021				
Particle Size Distribution Sieve Size % Passing Limits ASTM D 6913 75.0mm 100 100 100 Description: 37.5mm 100 100 Particle size distribution (gradation) of solus using sieve analysis. 37.5mm 100 100 Drying by: 25.0mm 87 100 100 Drying by: 10.0mm 76 100 100 Sample Washed: 2.0mm 39 97 350 Sample Washed 2.0mm 39 97 SSOUm 16 97 150,0mm 100 Sample Washed 2.0mm 39 97 250,0mm Source 2.0mm 39 97 250,0mm 100 Sample Washed 2.0mm 6.4 85.8 87 Finer 75µm 6.4 85.8 8 8 Description Method ASTM D 2216 6.1 22.1 41.4 28.5 30.9 30.7 Method ASTM D 2487 OP-GM CL-ML ML Mcmodeaneeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee	Sample ID Client Sample ID	В									
Method: Sieve Size % Passing Limits ASTM D 6913 75.0mm 100 100 Description: 37.5mm 100 100 Particle size distribution (gradation) of soils using sieve analysis. 37.5mm 100 100 Drying by: 12.5mm 66 100 100 Drying by: 12.5mm 66 100 100 Washed: 4.75mm 50.0mm 100 100 Sample Washed 2.0mm 39.5mm 97 250µm 16 97 Sample Washed 2.0mm 30.97 250µm 16 97 150µm 10 95 Sample Washed 2.0mm 6.1 22.1 41.4 28.5 30.9 30.7 Method B	•										
ASTM D 6913 75 0mm 100 100 Description: 50.0mm 100 100 gradation) of soils using sieve 25.0mm 87 100 analysis. 12.5mm 66 100 Washed: 2.50mm 87 100 9.5mm 61 100 Washed: 2.0mm 39 97 250µm 39 97 250µm 16 97 425µm 23 97 250µm 68 87 Finer 75µm 6.4 858 Other Test Results Description Method B B B B B B B Tested By John Platt Plat Plat Plat Plat Plat Plat Pla											
Description: 50.0mm 100 100 Particle size distribution 37.5mm 100 100 Particle size distribution 37.5mm 100 100 gradation () of solis using sieve analysis. 19.0mm 78 100 Drying by: 12.5mm 66 100 9.5mm 61 100 Sample Washed: 4.75mm 50 100 Sample Washed 2.0mm 39 97 250µm 16 97 Sample Washed 2.0mm 39 97 250µm 16 97 Sample Washed 30,0mm 6.4 85.8 Emetabolic Emetabolic Emetabolic Emetabolic Emetabolic Emetabolic Emetabolic Emetabolic Sample Vial Content (%) ASTM D 2487 GP-GM CL-ML ML Group Symbol ASTM D 2487 GP-GM CL-ML ML Group Symbol GP-GM CL-ML ML Group Symbol ASTM D 422 Emetabolic Sample Obtained While Own-Droined Group Symbol GP-GM			100		% P				Limits		
Description 37.5mm 100 100 (gradation) of soils using sieve analysis. 25.0mm 87 100 Drying by: 12.5mm 66 100 9.5mm 61 100 Washed: 2.0mm 39.5mm 66 25.0mm 87 100 Washed: 2.0mm 39 97 25.0pm 100 4.75mm 50 Sample Washed 2.0mm 39 97 250µm 16 97 150µm 150µm 10 95 75µm 6 75µm 6 87 87 160µm Water Content (%) ASTM D 2216 6.1 22.1 41.4 28.5 30.9 30.7 Method B											
(gradation) of soils using sieve analysis. 25.0mm 87 100 analysis. 19.0mm 78 100 Drying by: 12.5mm 66 100 9.5mm 61 100 95 Washed: 4.75mm 50 100 Sample Washed 2.0mm 39 97 250µm 16 97 150µm 16 75µm 6.4 85.8 8 8 Control of the second	•										
Drying by: 12.5mm 66 100 9.5mm 61 100 Washed: 3.5mm 50 100 2.0mm 39 97 B50µm 31 97 425µm 23 97 250µm 16 97 75µm 6 87 Finer 75µm 6.4 85.8 Other Test Results Limits Description Method 6.1 22.1 41.4 28.5 30.9 30.7 Method ASTM D 2216 6.1 22.1 41.4 28.5 30.9 30.7 Method ASTM D 2487 GP-GM Cl-ML John Platt John Platt <t< td=""><td></td><td>25.0mm</td><td>87</td><td></td><td></td><td>100</td><td></td><td></td><td></td></t<>		25.0mm	87			100					
9.5mm 61 100 Washed: 4.75mm 50 100 Sample Washed 2.0mm 39 97 850µm 31 97 425µm 23 97 425µm 23 97 425µm 23 97 425µm 23 97 250µm 16 97 150µm 10 95 75µm 6.4 85.8 Method 87 Description Method 8 B B	analysis.										
Washed: Sample Washed 4.75mm 50 100 Sample Washed 2.0mm 39 97 850µm 31 97 425µm 23 97 250µm 16 97 150µm 0 95 75µm 6 87 Finer 75µm 6.4 85.8 Other Test Results Limits Water Content (%) ASTM D216 6.1 22.1 41.4 28.5 30.9 30.7 Method B CL-ML ML	Drying by:										
Sample Washed 2.0mm 39 97 Sample Washed 2.0mm 39 97 A55µm 31 97 425µm 23 97 250µm 16 97 150µm 0 95 75µm 6.4 85.8 Other Test Results Limits Description Method Result Limits Water Content (%) ASTM D 2216 6.1 22.1 41.4 28.5 30.9 30.7 Method B <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
850µm 31 97 4250µm 233 97 250µm 16 97 150µm 10 95 75µm 6.4 85.8 Other Test Results Limits Description Method Results Limits Water Content (%) ASTM D 2216 6.1 22.1 41.4 28.5 30.9 30.7 Method B CLM ML Group Symbol ASTM D 287 GP-GM CL-ML ML Group Name GP-GM Group		-									
250µm 16 97 150µm 10 95 75µm 6.4 85.8 Other Test Results Limits Description Method 6.1 22.1 41.4 28.5 30.9 30.7 Method B B B B B B B B B Group Symbol ASTM D 2487 GP-GM CL-ML ML McGroup Name Silty clay Silt Method ASTM D 2487 GP-GM CL-ML ML Group Symbol ASTM D 2487 GP-GM Group Name Pooly graded grave with Silty clay Silt Method ASTM D 2487 GP-GM Group Name Pooly graded grave with Silty clay Silt Method McGrave Mill Group Symbol GFP-GM CL-ML ML McGrave Mill McGrave Mill Group Symbol GFP-GM CL-ML ML McGrave Mill McGrave Mill Group Symbol GFP-GM CL-ML ML McGrave Mill McGrave Mill Group Symbol GP-GM CL-ML ML McGrave Mill McGrave Mill Dispersion Method Dispersion Method Dispersion Method No			31			97					
150µm 10 95 75µm 6 87 Finer 75µm 6.4 85.8 Other Test Results Limits Limits Limits Limits Description Method Limits Limits Value Content (%) ASTM D 2216 6.1 22.1 41.4 2.85 30.9 30.7 Method B Classing colspan="2">Classing colspan="2">Classing colspan="2">Classing colspan="2">Classing colspan="2">Classing colspan="2">Classing colspan="2"Classing colspan="2"Classing colspan="2"Classing colspan="2"C											
75µm 6 87 Piner 75µm 6.4 85.8 Other Test Results Limits Description Method 6.1 22.1 41.4 28.5 30.9 30.7 Water Content (%) ASTM D 2216 6.1 22.1 41.4 28.5 30.9 30.7 Method B B B B B B B B B Tested By John Platt Group Symbol ASTM D 2487 GP-GM CL-ML ML Group Name Protygradd gravel with Sility clay Silit Group Name Oven-Dried GP-GM CL-ML ML Group Name Oven-Dried GP-GM CL-ML ML Group Symbol GFP-GM Oven-Dried GP-GM CL-ML ML Group Name Protygradd gravel with GP-GM CL-ML ML Dispersion Method Dispersion function Dispersion function Dispersion function Dispersion function Dispersion time (min) Shape Hardness Protent Gravel LMA (Internal Method) O											
Finer 75µm 6.4 85.8 Other Test Results Description Method Results Limits Water Content (%) ASTM D 2216 6.1 22.1 41.4 28.5 30.9 30.7 Method B D B D											
Other Test Results Limits Description Method Limits Method B B Limits Water Content (%) ASTM D 2216 6.1 22.1 41.4 28.5 30.9 30.7 Method B Colspan="2">Limits Group Symbol ASTM D 2487 GP-GM CL-ML ML Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspan											
Description Method Results Limits Water Content (%) ASTM D 2216 6.1 22.1 41.4 28.5 30.9 30.7 Method B	Other Test Results	•									
Water Content (%) ASTM D 2216 6.1 22.1 41.4 28.5 30.9 30.7 Method B		Method			Res	ults			l imits		
Tested By John Platt John Platt <td></td> <td></td> <td>6.1</td> <td>22.1</td> <td></td> <td></td> <td>30.9</td> <td>30.7</td> <td>Linito</td>			6.1	22.1			30.9	30.7	Linito		
Group Symbol ASTM D 2487 GP-GM CL-ML ML Group Name Poorly graded gravel with Silty clay Silt Method ASTM D 6913 Oven-Dried Sample Obtained While Oven-Dried Group Name Poorly graded gravel with Group Symbol GP-GM Composite Sieving Used No Dispersion Method Dispersant by hand Prior Testing Dispersion device Dispersion device ASTM D 422 Parcent Gravel LMA (Internal Method) Percent Gravel LMA (Internal Method) Percent Fines (Silt/Clay) 93 Group Symbol ML											
Group Name Porty graded gravel with Silty clay Silt Method ASTM D 6913 Sample Obtained While Oven-Dried Group Name Poorly graded gravel with Silt and eand Group Symbol GP-GW Composite Sieving Used No Dispersion Method Dispersant by hand Prior Testing Dispersion device Dispersion device ASTM D 422 Dispersion time (min) Shape Hardness Percent Gravel LMA (Internal Method) 0 Percent Fines (Silt/Clay) 93 Group Symbol ML				John Platt	John Platt			John Platt			
Method ASTM D 6913 Sample Obtained While Oven-Dried Group Name Poorly grade grave with strant search of GP-GM Group Symbol GP-GM Composite Sieving Used No Dispersion Method Dispersant by hand Prior Testing Dispersion device Dispersion device ASTM D 422 Dispersion time (min) Shape Hardness Percent Gravel Percent Gravel LMA (Internal Method) Percent Fines (Silt/Clay) 93 Group Symbol ML											
Sample Obtained While Oven-Dried Group Name Poorly graded gravel with eit and eard Group Symbol GP-GM Composite Sieving Used No Dispersion Method Dispersant by hand Prior Testing	•		eilt and eand			Only Gay	Oiit				
Group Number of GP-GM Composite Sieving Used No Dispersion Method Dispersant by hand Prior Testing Dispersion device ASTM D 422 Dispersant by hand Dispersion time (min) Shape Hardness Percent Gravel LMA (Internal Method) 0 Percent Sand 7 Percent Fines (Silt/Clay) 93 Group Symbol ML			Oven-Dried								
Group Symbol GP-GM Composite Sieving Used No Dispersion Method Dispersant by hand Prior Testing Dispersion device Dispersion device ASTM D 422 Dispersion time (min) Shape Hardness Percent Gravel Percent Sand 7 Percent Fines (Silt/Clay) 93 Group Symbol ML		Poo	eilt and eand								
Dispersion Method Dispersant by hand Prior Testing Dispersion device ASTM D 422 Dispersant by hand Dispersion time (min) Shape Hardness Percent Gravel LMA (Internal Method) Percent Sand 7 Percent Fines (Silt/Clay) Group Symbol ML											
Prior Testing Dispersion device ASTM D 422 Dispersant by hand Dispersion time (min) Shape Hardness Hardness Percent Gravel LMA (Internal Method) Percent Sand 7 Percent Fines (Silt/Clay) 93 Group Symbol ML											
Dispersion device ASTM D 422 Dispersant by hand Dispersion time (min) Shape Hardness Hardness Percent Gravel LMA (Internal Method) Percent Sand 7 Percent Fines (Silt/Clay) 93 Group Symbol ML											
Shape Hardness Percent Gravel LMA (Internal Method) Percent Sand 7 Percent Fines (Silt/Clay) 93 Group Symbol ML		ASTM D 422				Dispersant by hand					
Hardness 0 Percent Gravel LMA (Internal Method) 0 Percent Sand 7 Percent Fines (Silt/Clay) 93 Group Symbol ML											
Percent Gravel LMA (Internal Method) 0 Percent Sand 7 Percent Fines (Silt/Clay) 93 Group Symbol ML	-										
Percent Sand 7 Percent Fines (Silt/Clay) 93 Group Symbol ML		I MA (Internal Mot	hod)				0				
Group Symbol ML			ilou)								
Comments	Group Symbol						ML				
Comments											
	Comments										

AIL	

Mater	ial Test F	Iss	Report No: ASM:21-0711 Issue No: 3						
Client:	Group, LLC Ste. 300 503		Maria Kampsen Steven Halcomb		The results contained below pertain only to the items tested below. This report sho reproduced, except in full, without the prior written approval of Alaska Testlab or the				
Project:	10149.00 - Norann								
	,				Revi Title Date		oratory Supervi	isor	
Sample	Details								
Sample ID Client Sam Date Samp			21-0711-S01 BH-05 Sample 1A	21-0711-S02 BH-05 Sample 1B	21-0711-S03 BH-05 Sample 2A	21-0711-S04 BH-05 Sample 2B	21-0711-S05 BH-05 Sample 3	21-0711-S06 BH-05 Sample 4	
Other Te	est Results								
Description		Method			Res	ults			Limits
	naximum grain size on 425µm (No. 40) (%)	ASTM D 431	8						
Method of R	• • • • • •					N/A			
Grooving To	ol Type					Plastic			
Specimen preparation method						Dry			
Drying Meth						Air			
Rolling Meth	ction process					N/A Hand			
U V	/ater Content (%)					28.5			
	Device Type					Mechanical			
Liquid Limit	51					25			
Plastic Limit						21			
Plasticity Inc						4			
Liquid Limit	Procedure					Multipoint (A)			
Tested By						Nathan Lervold			

rial Test F	Report	Report No Issue No:	Report No: ASM:21-0711 Issue No: 3			
3940 Arctic Blvd., S	ite. 300					
10149.00 - Norann						
,				Reviewed By: Title: Date:	Oscar Lage Laboratory Supervisor 6/3/2021	
Details						
D mple ID ipled			21-0711-S08 BH-05 Sample 6			
est Results						
on	Method			Results		Limits
tent (%)	ASTM D 2216	В	В			
nbol	ASTM D 2487	ML	John Hat			
ravel and nes (Silt/Clay) nbol	LMA (Internal Meth	-				
	CRW Engineering (3940 Arctic Blvd., S Anchorage, AK 995 10149.00 - Norann , Details D mple ID mpled Cest Results on tent (%)	Details D mple ID ppled fest Results on tent (%) ASTM D 2216 hbol ASTM D 2487 ne ravel LMA (Internal Meth and nes (Silt/Clay)	CRW Engineering Group, LLC 3940 Arctic Blvd., Ste. 300 Anchorage, AK 99503 10149.00 - Norann , Details D 21-0711-S07 BH-05 Sample 5 apled Sest Results Son Method tent (%) ASTM D 2216 23.1 B John Platt nbol ASTM D 2487 ML ne Sandy silt ravel LMA (Internal Method) 4 and 40 nes (Silt/Clay) 56	CRW Engineering Group, LLC 3940 Arctic Blvd., Ste. 300 Anchorage, AK 99503 10149.00 - Norann , Details D 21-0711-S07 21-0711-S08 BH-05 Sample 5 BH-05 Sample 6 BH-05 Sample 6 BH	Issue No: CRW Engineering Group, LLC 3940 Arctic Blvd., Ste. 300 Anchorage, AK 99503 10149.00 - Norann CC: Maria Kampsen Steven Halcomb The results contained reproduced, except in . . . Reviewed By: Title: Date: 	CRW Engineering Group, LLC CC: Maria Kampsen Steven Halcomb The results contained below pertain only to the Items tested below. The produced, except in full, without the prior written approval of Alaska 3940 Arctic Blvd., Ste. 300 Anchorage, AK 99503 The results contained below pertain only to the Items tested below. The produced, except in full, without the prior written approval of Alaska 10149.00 - Norann Reviewed By: Oscar Lage Title: Laboratory Supervisor Date: 6/3/2021 Details 21-0711-S07 21-0711-S07 21-0711-S08 mple ID BH-05 Sample 5 BH-05 Sample 5 BH-05 Sample 6 on Method Results tent (%) ASTM D 2216 23.1 27.2 B B B John Platt John Platt John Platt nbol ASTM D 2487 ML ne Sandy silt ravel and 40 40

ATL	

	-				Issue No			have the second s		
3940 Arctic Anchorage,	Blvd., Ste. 300 AK 99503	_C (CC: Maria Kampsen Steven Halcomb			The results contained below pertain only to the items tested below. This report should not be reproduced, except in full, without the prior written approval of Alaska Testlab or the agency.				
10149.00 -	Norann									
,					Title:	Laboratory Sup	ervisor			
Details				Other T	<u>u</u>					
	21-0711-S01					Method	Result	Limits		
ple ID		e 1A		Water Cont						
011	Sleve			Tested By			John Platt			
					d		5/18/2021			
					tained While	ASTMD				
				Group Nam	e Poor	ly graded gravel v	vith silt and sand			
							GP-GM			
				Dispersion	Method	Dis				
				Prior Testir	g		-			
Size Dis	tribution									
						Method: A	STM D 6913			
sing										
X			•••••••	•••••		Tested By: N	athan Lervold			
	\						-	Limits		
	\mathbf{N}					2in (50.0mm)	100			
	\mathbf{X}						100			
	\sim		•••••••	•••••			78			
						½in (12.5mm)	66			
		\mathbf{N}								
			_			No.10 (2.0mm)	39			
			\sim							
		•••••		×		No.40 (425µm) No.60 (250µm)	23 16			
						No.100 (150µm)	10			
						No.200 (75µm)	6			
			Line in the second seco		L L L L L L L L L L L L L L L L L L L	Finer 75µm	6.4			
75.0mm 50.0mm 37.5mm 25.0mm	19.0mm 12.5mm 9.5mm	Sieve	850µm	250µm 150µm	12Pm					
	CRW Engin 3940 Arctic Anchorage, 10149.00 - , Details ple ID on	CRW Engineering Group, LI 3940 Arctic Blvd., Ste. 300 Anchorage, AK 99503 10149.00 - Norann , Details 21-0711-S01 ple ID BH-05 Samplon Sieve	3940 Arctic Blvd., Ste. 300 Anchorage, AK 99503 10149.00 - Norann , Details 21-0711-S01 ple ID BH-05 Sample 1A on Sieve	CRW Engineering Group, LLC 3940 Arctic Blvd., Ste. 300 Anchorage, AK 99503 10149.00 - Norann , Details 21-0711-S01 ple ID BH-05 Sample 1A on Sieve	CRW Engineering Group, LLC 3940 Arctic Blvd., Ste. 300 Anchorage, AK 99503 10149.00 - Norann , Details 21-0711-S01 ple ID BH-05 Sample 1A on Sieve 21-0715 Sieve Description Water Cont Method Tested By Date Testee Method Sample Ob Group Nam Group Sym Composite Dispersion Prior Testin	CRW Engineering Group, LLC 3940 Arctic Blvd., Ste. 300 Anchorage, AK 99503 10149.00 - Norann CC: Maria Kampsen Steven Halcomb The results content reproduced, excent steven Halcomb	CRW Engineering Group, LLC 3940 Arctic Bilvd, Ste. 300 Anchorage, AK 99503 10149.00 - Norann CC: Marie Kampsen Steven Halcomb Issue Notice Method Improduced, except in full, without the prior write produced, except in full, without the prior write produced, except in full, without the prior write produced, except in full, without the prior write prior write 9 Other Test Results Details Other Test Results 9 Details 0 Method 9 BH-05 Sample 1A on Sieve Description Method Tested By Date Tested Method Group Name Poorly graded gravel v Group Symbol Composite Sieving Used Dispersion Method Dispersion Method Method: A Margo Method: Margo Method: Sieve Size 3in (75.0mm) 2in (32.5mm) 38in (9.5mm) No.4 (4.75mm) No.4 (4.75mm) No.4 (4.75mm) No.4 (4.75mm) No.20 (850µm)	CRW Engineering Group, LLC 3940 Arctic Blvd., Ste. 300 Anchorage, AK 99503 CC: Marine Kampeen Steven Halcomb Issue No: 1 Prevalue diverse blow petition only the lumm tender blow. The report reported of asks Testing of Anchorage, AK 99503 Reviewed By: Oscar Lage Title: Laboratory Supervisor Date: 6/2/2021 Details Other Test Results Details Description Method ASTM D 2216 BH-05 Sample 1A Sieve Description Method ASTM D 2216 Method ASTM D 6913 Sample Obtained While Group Name Over-Dried Group Symbol Composite Sieving Used Orop Size Distribution No Method ASTM D 6913 Size Distribution Method Marin Testing No Mice Size (Size) % Passing 3in (75.0mm) Marin Law (Size (Size) % Passing 3in (75.0mm) Marin (19.0mm) 78 Yin (19.0mm) Marin (Size (Size) % Passing 3in (75.0mm)		

Client:	CRW Eng 3940 Arc	est Report gineering Group, LLC tic Blvd., Ste. 300	CC: Maria K Steven	(ampso Halco
Project:	-	ge, AK 99503 I - Norann		
-	e Details	S		0
Sample I	ID ample ID	21-0711-S04 BH-05 Sample 2B		De Wa Me

erial Test Report	Issue No	lo: MAT:21-0711-S0): 2)4	
CRW Engineering Group, LLC CC: Maria Kamps. 3940 Arctic Blvd., Ste. 300 Anchorage, AK 99503 10149.00 - Norann	n The results contain reproduced, excep nb	ed below pertain only to the items testec t in full, without the prior written approval		
,	Reviewed B	By: Oscar Lage		
	Title:	Laboratory Supervisor		
	Date:	6/8/2021		
ole Details Of	her Test Results	S		
	scription	Method	Result	Limits
	ter Content (%)	ASTM D 2216	28.5	
	thod		B B	
	ted By		John Platt	
	e Tested oup Symbol	ASTM D 2487	5/18/2021 CL-ML	
	up Name	AGTIVI D 2407	Silty clay	
<u></u>		ASTM D 422		
Dis	persion device	Dispersa	int by hand	
	persion time (min)			
Sh				
На	dness			
le Size Distribution				
		Method: ASTM I	D 422	
Passing		Date Tested: 5/25/20		
0	******	Tested By: Nathan	VVIISON	
o [†]				
\sim			_	
+ N		Sieve Size % P	assing	Limits
λ		Sieve Size % P 3in	assing 100	Limits
+				Limits
o	\mathbf{n}	3in 2in 1½in	100 100 100	Limits
+ 0		3in 2in 1½in 1in	100 100 100 100	Limits
+		3in 2in 1½in 1in ¾in	100 100 100 100 100	Limits
+ 0		3in 2in 1½in 1in ¾in ½in	100 100 100 100 100 100	Limits
		3in 2in 1½in 1in ¾in ½in 3/8in	100 100 100 100 100 100 100	Limits
		3in 2in 1½in 1in ¾in ½in 3/8in No.4	100 100 100 100 100 100 100 100	Limits
		3in 2in 11⁄2in 1in ¾in ½in 3/8in No.4 No.10	100 100 100 100 100 100 100 100 97	Limits
		3in 2in 11⁄2in 1in 3¼in 1⁄2in 3/8in No.4 No.10 No.20	100 100 100 100 100 100 100 97 97	Limits
		3in 2in 11⁄2in 1in 3⁄4in 1⁄2in 3/8in No.4 No.10 No.20 No.40	100 100 100 100 100 100 100 97 97 97	Limits
		3in 2in 11/2in 1in 3/4in 1/2in 3/8in No.4 No.10 No.20 No.40 No.60	100 100 100 100 100 100 100 97 97 97 97	Limits
		3in 2in 11⁄2in 1in 3⁄4in 1⁄2in 3/8in No.4 No.10 No.20 No.40	100 100 100 100 100 100 100 97 97 97	Limits
		3in 2in 11/2in 1in 3/4in 1/2in 3/8in No.4 No.10 No.20 No.40 No.60 No.100	100 100 100 100 100 100 100 97 97 97 97 97	Limits
		3in 2in 11/2in 1in 3/4in 1/2in 3/8in No.4 No.10 No.20 No.40 No.40 No.60 No.100 No.200	100 100 100 100 100 100 100 97 97 97 97 97 97 97	Limits
		3in 2in 1½in 1in ¾in ½in 3/8in No.4 No.10 No.20 No.40 No.60 No.100 No.200 Finer No.200 (75μm) 26.3 μm 17.2 μm	100 100 100 100 100 100 100 97 97 97 97 97 97 95 87 85.8 50.1 45.3	Limits
		3in 2in 1½in 1in ¾in ½in 3/8in No.4 No.10 No.20 No.40 No.60 No.100 No.200 Finer No.200 (75μm) 26.3 μm	100 100 100 100 100 100 100 97 97 97 97 97 95 87 85.8 50.1	Limits

Frost Class: F4

ATL	

Mate	rial Test Report	Report No: MAT:21-0711-S04 Issue No: 2		
Client:	CRW Engineering Group, LLC 3940 Arctic Blvd., Ste. 300 Anchorage, AK 99503	CC: Maria Kampsen Steven Halcomb	The results contained below pertain only to the items tested below. This report should not be reproduced, except in full, without the prior written approval of Alaska Testiab or the agency.	
Project:	10149.00 - Norann			
	,		Reviewed By: Oscar Lage Title: Laboratory Supervisor Date: 6/8/2021	

Other Test Results

Description	Method	Result	Limits
Approximate maximum grain size	ASTM D 4318		
Material retained on 425µm (No. 40) (%)			
Method of Removal		N/A	
Grooving Tool Type		Plastic	
Specimen preparation method		Dry	
Drying Method		Air	
Special selection process		N/A	
Rolling Method for PL		Hand	
As Received Water Content (%)		28.5	
Liquid Limit Device Type		Mechanical	
Liquid Limit		25	
Plastic Limit		21	
Plasticity Index		4	
Liquid Limit Procedure		Multipoint (A)	
Tested By		Nathan Lervold	
Date Tested		5/27/2021	

Comments

Frost Class: F4

ATL	
ATL	

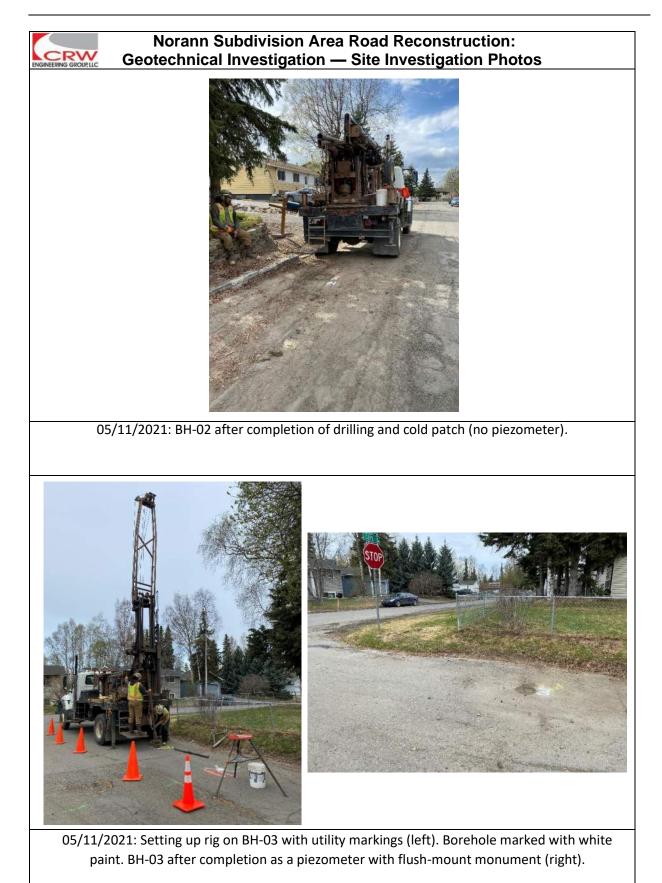
	rial Test					oort No: AS ue No: 3			
Client:	CRW Engineering 3940 Arctic Blvd., Anchorage, AK 99	, Ste. 300	CC:	Maria Kampsen Steven Halcomb	The res reprodu	sults contained below p uced, except in full, with	ertain only to the items nout the prior written ap	tested below. This repor proval of Alaska Testlab o	t should not be or the agency.
Project:	10149.00 - Noran ,	IN			Revie Title:	ewed By: Osc	ar Lage oratory Superv	visor	
					Date	: 6/3/2	2021		
Sample	Details								
Sample ID Client San Date Sam	nple ID	E	21-0712-S01 3H-06 Sample 1A	21-0712-S02 BH-06 Sample 1B	21-0712-S03 BH-06 Sample 2A	21-0712-S04 BH-06 Sample 2B	21-0712-S05 BH-06 Sample 3A	21-0712-S06 BH-06 Sample 3B	
Other Te	est Results								
Descriptio		Method	2.0	40.0		ults	470.4	10.2	Limits
Water Conte Method	ent (%)	ASTM D 2216	3.9 B	16.6 B	157.1 B	215.7 B	173.1 B	19.3 B	
Tested By			John Platt	John Platt	John Platt	John Platt	John Platt	John Platt	
Group Syml Group Nam		ASTM D 2487						ML Sandy silt	
Percent Gra	ivel	LMA (Internal Met	thod)					0	
Percent Sar								34 66	
Group Syml	es (Silt/Clay) bol							ML	
ereup eynn									

NP = Non Plastic

	rial Test F	-			ls	sue N	lo: 3	SM:21-0712	
Client:	CRW Engineering G 3940 Arctic Blvd., Si Anchorage, AK 9956	te. 300	CC: M	/laria Kampsen Steven Halcomb				v pertain only to the items tested i vithout the prior written approval o	
Project:	10149.00 - Norann								
	,				Rev Title Dat	e:	La	scar Lage Iboratory Supervisor 3/2021	
Sample	Details								
Sample ID Client San Date Samp	nple ID		21-0712-S07 BH-06 Sample 4	21-0712-S08 BH-06 Sample 5	21-0712-S0 BH-06 Sample 6		-0712-S1 6 Sample 6		
Other Te	est Results								
Descriptio	n	Method			Re	sults			Limits
Water Conte		ASTM D 2216	26.1	24.9	25.9	9	21.	3	
Method			В	В		3		В	
Tested By			John Platt	John Platt	John Plat	tt Jo	ohn Pla	tt	
Group Syml		ASTM D 2487							
Group Nam									
	naximum grain size on 425µm (No. 40) (%)	ASTM D 4318							
Method of F					N//				
Grooving To					Plasti				
	reparation method				Dr				
Drying Meth					Ai				
	ection process				N/A				
Rolling Meth					Hano 25.9				
	Vater Content (%) Device Type				Mechanica				
Liquid Limit					N/A				
Plastic Limit					NF				
Plasticity Ind					NF				
Liquid Limit	Procedure				Multipoint (A				
Tested By	Tioocdulo				Nathan Lervol				
rested by					Natian Leivon	u			

NP = Non Plastic

Appendix C


Site Investigation Photos

Included in this section:

1) Select Site Photos

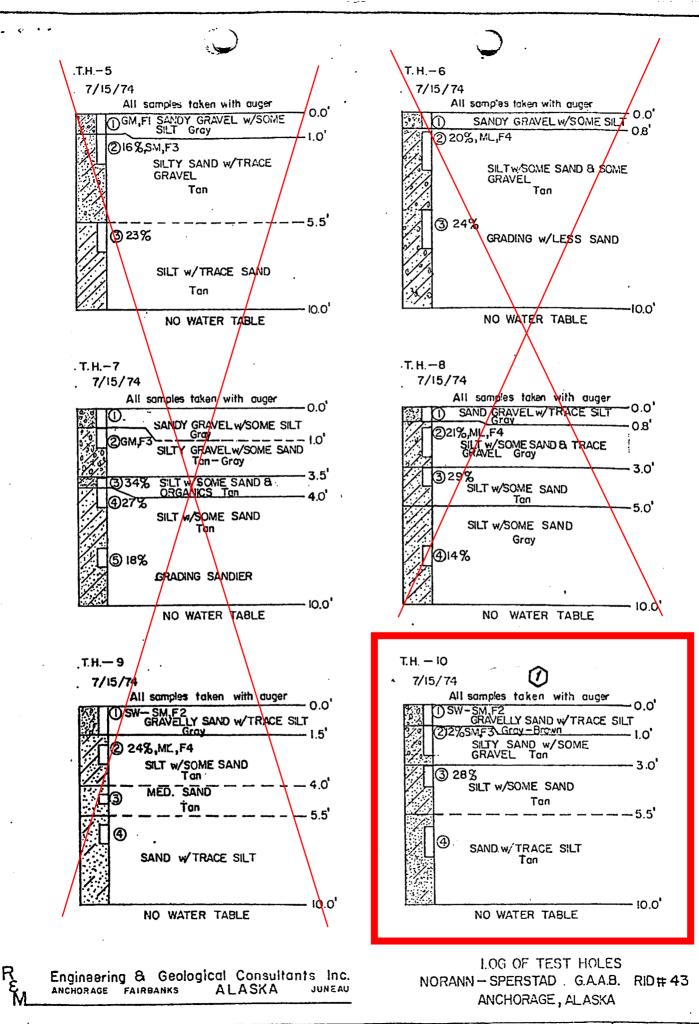
05/11/2021: Drill rig on BH-02 with utility markings prior to drilling. Borehole marked with white paint.

05/11/2021: BH-05 after completion as a piezometer with flush-mount monument (left). After approximately a month, ground had subsided around the monument and left the casing protruding above the lip of the monument (right). The casing was cut down so the monument lid could be closed.

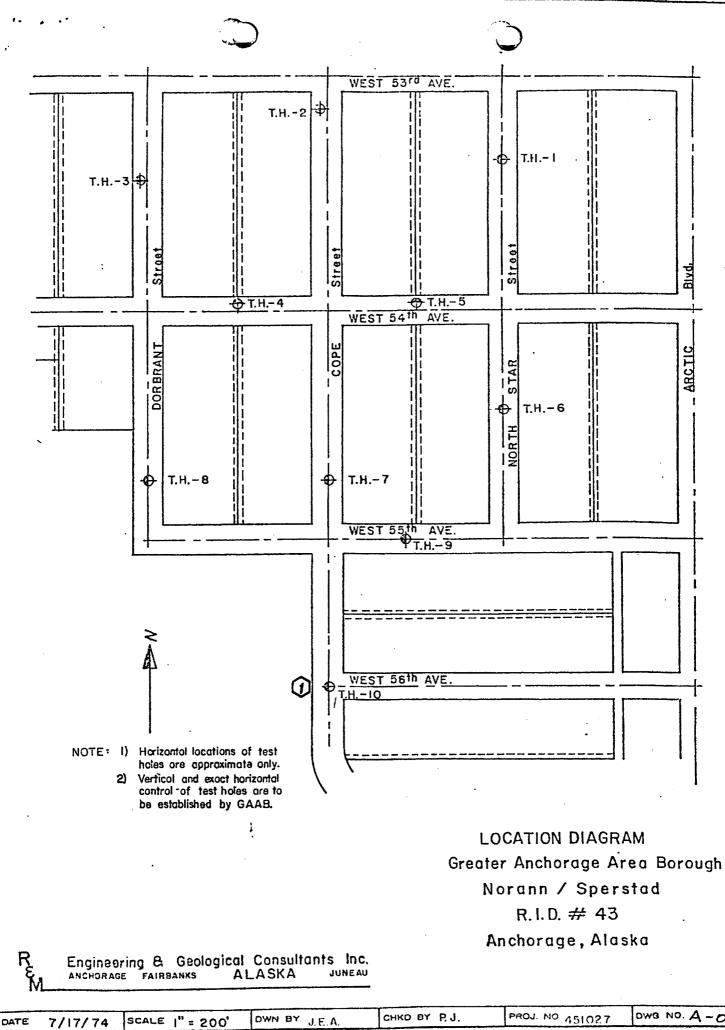
Norann Subdivision Area Road Reconstruction: Geotechnical Investigation — Site Investigation Photos

05/11/2021: BH-06 with utility markings prior to drilling. Borehole marked with white paint. Alleyway had been graded the day before drilling, eradicating previous markings in the road.

05/11/2021: BH-06 after completion. Hole was backfilled with cuttings from this hole and gravel was spread at surface and leveled.


Appendix D

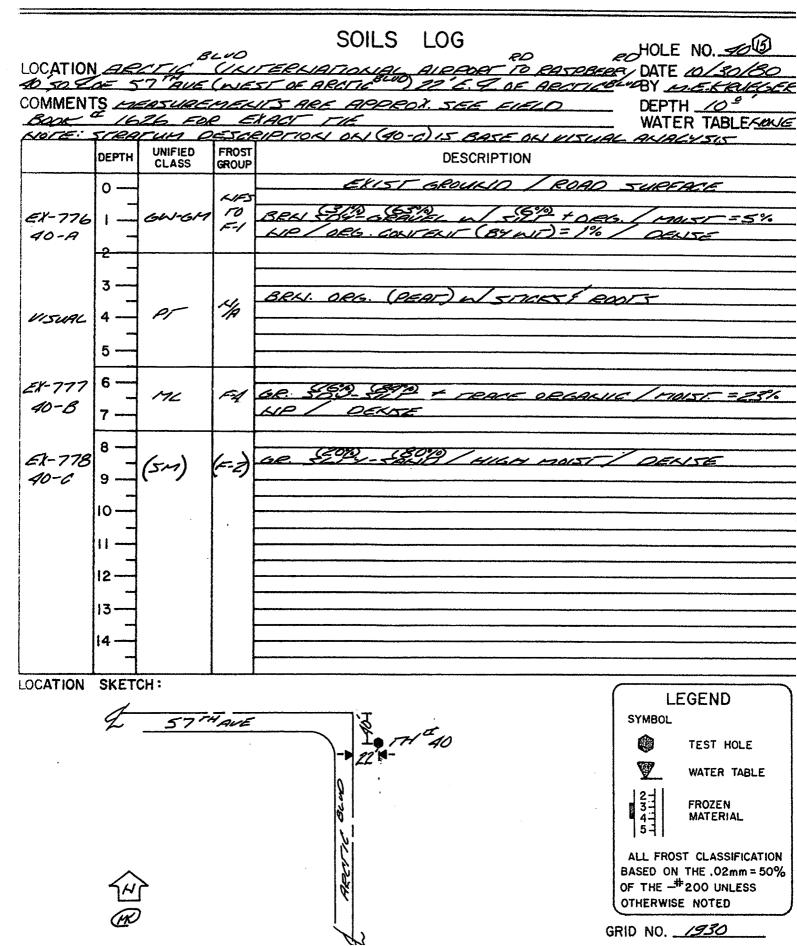
Historic Geotechnical Data

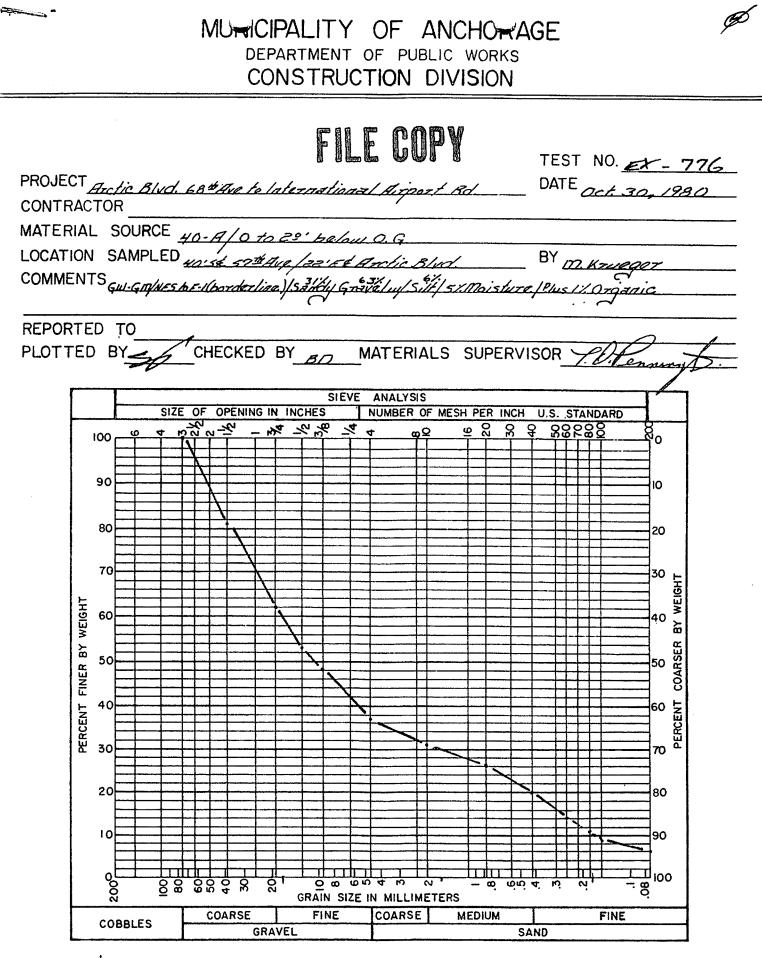

Included in this section:

- 1) Cope Street
- 2) Arctic Boulevard

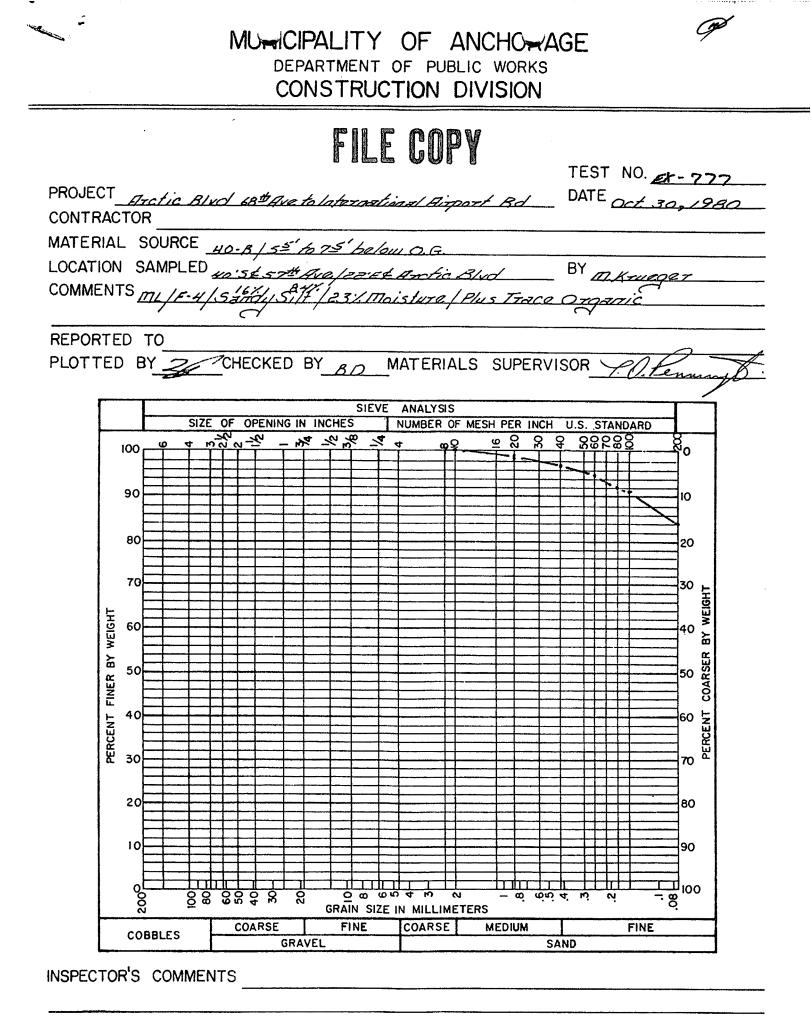
Cope Street

					The second s		T			
	DATE	7/15/74	SCALE	1"- 5	OWN BY	M.A.M.	CHKD BY	P.1	PROJ. NO. 451027	OW3 NO.B - 04
	DATE	17137 14	Journe L	5	10			1.0		
- 1	And in case of the local division of the loc	1928 - Partie - Parti	······							

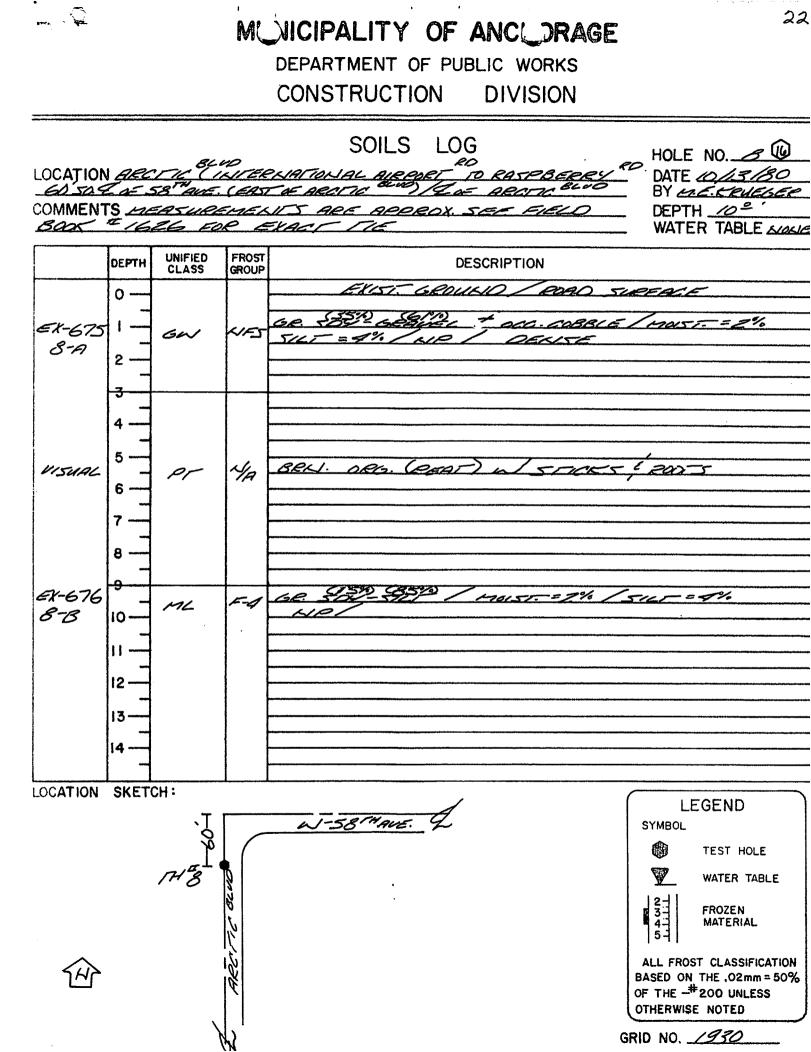

DWB NO. A-01


Arctic Boulevard

MUICIPALITY OF ANCUDRAGE


DEPARTMENT OF PUBLIC WORKS

CONSTRUCTION DIVISION



INSPECTOR'S COMMENTS

82.009 (2/77)

MUMICIPALITY OF ANCHOMAGE DEPARTMENT OF PUBLIC WORKS CONSTRUCTION DIVISION FILE GOPY TEST NO. EX-675 PROJECT Arctic Blud / 68th Ave to International Airport Rd DATE Oct. 1.3, 1980 CONTRACTOR MATERIAL SOURCE <u>B-A/O to 3º' below O.G.</u> LOCATION SAMPLED <u>60'SE SAth Ave / E Anctic Blud</u> COMMENTS <u>GW/NES/Sändy Grave/2: Moisture / 4% Sill</u> REPORTED TO PLOTTED BY CHECKED BY BO MATERIALS SUPERVISOR YO. Ferry SIEVE ANALYSIS NUMBER OF MESH PER INCH U.S. STANDARD SIZE OF OPENING IN INCHES - 32 22 4 g0 <u>∞</u> % % % % 88588 Ͻ 100 90 10 80 20 30 49 ВҮ WEIGHT 70 PERCENT FINER BY WEIGHT COARSER 50 PERCENT 70 20 80 10 90 2000 8 8 8 8 8 8 1111 0 0 0 0 4 m ľ, 100 2 GRAIN SIZE IN MILLIMETERS COARSE FINE COARSE MEDIUM FINE COBBLES GRAVEL SAND

INSPECTOR'S COMMENTS

Appendix E

BERG2 Thermal Analysis Output

Included in this section:

1) BERG2 Analysis – Limited Subgrade Frost Penetration Analysis – 2" Insulated Section

BERG2 Analysis – Limited Subgrade Frost Penetration Analysis – 2" Insulated Section

LOCATION/CLIMATE:

FAIRBANKS NORTHWAY KOTZEBUE	ANCHORAGE DILLINGHAM GULKANA	JUNEAU POINT CENTRA	BARRO	W	McKINLEY PARK E BETHEL USER INPUT
THAW N FACTOR FREEZE N FACTOR DESIGN AIR THAWING DESIGN AIR FREEZING MEAN AIR THAWING IN MEAN AIR FREEZING I MEAN ANNUAL AIR TEM	INDEX °DAYS INDEX °DAYS DEX °DAYS NDEX °DAYS P. °F SINE WAVE	1.7 <u>1</u> 4000 3200 3500 2300 35.3	E		
DESIGN SURFACE FREE MEAN SURFACE THAWIN MEAN SURFACE FREEZI MEAN ANNUAL SURFACE	ING INDEX °DAYS ZING INDEX °DAYS G INDEX °DAYS NG INDEX °DAYS TEMP. °F MP. SINE WAVE	3200 5950 2300 42	AIR	AW SEASON LENGTH 198 217.2	LENGTH 167
INPUT FIRST LETTER OF OR USE CURSOR CONTROL F1-COLOR F2-SAVE F3	KEYS TO MOVE CURSOR				REEN 0-0UIT

SOIL INPUTS

Layer	Thickness (ft)	Density (pcf)	M.C. (%)	Comment
Asphalt	0.17	138	-	-
Fill (Type II-A)	1.50	130	6.0	-
Insulation	0.17	1.8	-	-
Fill (Type II)	2.00	130	6.0	-
Subgrade	2.50	100	18.0	-

ANALYSIS RESULTS:

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ANCHORAG 1.7		THAW °F DAY FF 4000 		
R YFROZEN DENS.138.0130.01.8130.0100.0E CFROZEN HEAT CAP28.0026.003.0026.0026.00E LFROZEN COND. 0.86^{\perp} 1.58^{\perp} 0.02^{\perp} 1.58^{\perp} 0.94 Z EINITIAL THICK T 0.17^{\perp} 1.50^{\perp} 0.17^{\perp} 2.00^{\perp} 2.50	H Y A C W L	FROZEN DENS. LATENT HEAT FROZEN HEAT CAP FROZEN COND. THAWED % MOIS. THAWED MEAT CAP THAWED HEAT CAP THAWED COND. INITIAL THICK AMOUNT THAWED CONSOLIDATION	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	R Y E C E L Z E	FROZEN DENS. FROZEN HEAT CAP FROZEN COND. INITIAL THICK	138.0 130.0 28.00 26.00 - 0.86 1.58 - 0.17 1.50	$\begin{array}{c ccccc} 1.8 & 130.0 & 100.0 \\ 3.00 & 26.00 & 26.00 \\ 0.02^{\perp} & 1.58^{\perp} & 0.94 \\ 0.17_{\top} & 2.00_{\top} & 2.50 \end{array}$	

RESULTS

Parameter	Value						
Total Section Thickness	3.83 ft						
Thaw Depth	5.59 ft						
Freeze Depth	4.02 ft						
Subgrade Frost Penetration	0.18 ft						
Subgrade Frost Percent ¹	4.7%						
I. Equal to Subgrade Frost Penetration divided by Total Section Thickness							

Project Cost Estimates

ENGINEER'S ESTIMATE - FINAL DSM - ALTERNATIVE 1

ITEM	MASS	ITEM DESCRIPTION	UNIT	CALC.	CONT.	ROUND	EST QUANT	UNIT PRICE	TOTAL COST
No.	No.	adway Improvements	_	QUANT	FACTOR	FACTOR		-	
A-1		Storm Water Pollution Prevention Plan (Type 3)	LS	1	1.00	0	1	\$37,000	\$37,000
A-1 A-2	20.02	Test Pit for Utility Locate	Hour	24	1.00	0	24	\$800	\$19,200
A-3	20.04	Clearing and Grubbing	LS	1	1.00	0	1	\$37,000	\$37,000
A-4	20.07	Remove Sidewalk or Concrete Apron	SY	390	1.00	0	390	\$35	\$13,650
A-5	20.08	Remove Curb and Gutter	LF	2,793	1.00	0	2,793	\$12	\$33,516
A-6	20.09	Remove Pavement	SY	6,947	1.00	0	6,947	\$4	\$27,788
A-7	20.10	Unusable Excavation	CY	12,776	1.20	-2	15,300	\$21	\$321,300
A-8	20.12	Dewatering	LS	1	1.00	0	1	\$15,000	\$15,000
A-9	20.21	Classified Fill and Backfill (Type II)	Ton	12,368	1.20	-2	14,800	\$21	\$310,800
A-10	20.21	Classified Fill and Backfill (Type II-A)	Ton	11,017	1.20	-2	13,200	\$21	\$277,200
A-11	20.22	Leveling Course	Ton	766	1.06	-1	810	\$60	\$48,600
A-12	20.25	Geotextile (Type A)	SY	11,001	1.00	-1	11,000	\$2	\$22,000
A-13	20.26	Insulation Board (R-9)	SF	78,901	1.01	-1	79,690	\$4	\$318,760
A-14		Insulation Board (R-4.5)	SF	7,193	1.01	-1	7,260	\$3	\$21,780
A-15		P.C.C. Curb and Gutter (All Types)	LF	3,408	1.00	0	3,408	\$40	\$136,320
A-16		P.C.C. Sidewalk (Standard Finish)	SY	2,071	1.00	0	2,071	\$100	\$207,100
A-17	30.04	P.C.C. Curb Ramp (6" Thick)	EA	7	1.00	0	7	\$4,500	\$31,500
A-18	30.04	Detectable Warnings	SF	84	1.00	0	84	\$150	\$12,600
A-19		P.C.C. Structures/Retaining Wall (Class AA-3)	CY	10	1.15	0	12	\$500	\$6,000
A-20		Colored Concrete (Red, Imprinted)	CY	909	1.15	0	1,045	\$300	\$313,500
A-21		A.C. Pavement (Class A)	Ton	38	1.06	-1	40	\$240	\$9,600
A-22		A.C. Pavement (Class E)	Ton	780	1.06	-1	830	\$175	\$145,250
A-23	50.06	Remove and Replace Manhole Cone Section	EA	6		0	6	\$2,650	\$15,900
A-24	50.06	Remove and Replace Manhole Cover and Frame	EA	2		0	2	\$1,400	\$2,800
A-25 A-26	55.08 60.03	Adjust Storm Drain Manhole Ring to Finish Grade	EA	2	1.00	0	2 5	\$1,000 \$700	\$2,000 \$3,500
A-26 A-27		Remove and Replace Valve Box Top Section Adjust Key Box	EA	5 16	1.00	0	5 16	\$700	\$3,500 \$9,600
A-27 A-28		Construction Survey Measurement	LS	10	1.00	0	16	\$60,000	\$9,600
A-20 A-29	65.02	Two-Person Survey Crew	Hour	40	1.00	0	40	\$60,000	\$10,000
A-29 A-30	70.08	Remove and Reset Fence	LF	1,040	1.00	0	1,092	\$55	\$60,060
A-30	70.08	Remove Fence	LF	425	1.00	0	425	\$33 \$14	\$5,950
A-32	70.08	Remove and Reset Gate	LF	32	1.00	0	32	\$20	\$640
A-33	70.10	Inlaid Traffic Markings (Methyl Methacrylate, 4" Yellow, 125 Mil)	LF	195	1.00	0	195	\$20	\$3,900
A-34	70.10	Inlaid Traffic Markings (Methyl Methacrylate, 24" White, 125 Mil)	LF	34	1.00	0	34	\$100	\$3,400
A-35		Inlaid Traffic Markings (Methyl Methacrylate, Words & Symbols, 125 Mil)	EA	2	1.00	0	2	\$1,100	\$2,200
A-36	70.11	Standard Sign	SF	41	1.00	0	41	\$110	\$4,510
A-37	70.12	Traffic Maintenance	LS	1	1.00	0	1	\$240,000	\$240,000
A-38	70.16	Temporary Group Mailboxes	LS	1	1.00	0	1	\$7,000	\$7,000
A-39	70.17	Relocate Mailbox	EA	41	1.00	0	41	\$800	\$32,800
A-40	70.22	Removal/Disposal and/or Salvage/Installation of Obstructions	LS	1	1.00	0	1	\$20,000	\$20,000
A-41	70.23	Temporary Fencing	LF	1,072	1.05	0	1,126	\$20	\$22,520
A-42	75.12	Temporary Tree Protection Fence	LF	450	1.00	0	450	\$18	\$8,100
A-43	75.13	Landscaping	LS	1	1.00	0	1	\$25,000	\$25,000
								TOTAL	\$2,905,344

ITEM	MASS	ITEM DESCRIPTION	UNIT	CALC.	CONT.	ROUND	EST QUANT	UNIT PRICE	TOTAL COST
No.	No.	inage Improvements		QUANT	FACTOR	FACTOR			
B-1	<u>.</u>	Trench Dewatering	LS	4	1.00	0	4	\$15,000	\$15,000
B-1 B-2		Trench Dewatering Trench Excavation and Backfill (Various Depths)	LS	1.156	1.00	0	1	\$15,000 \$35	
в-2 В-3		Furnish Trench Backfill (Type II)	Ton	1,156	1.00	0	1,156 48	\$35 \$20	\$40,460 \$960
в-3 В-4			LF	1.156	1.20	0	48		
в-4 В-5		Bedding Material (Class D) Insulation Board (R-20)	SF	1,156	1.00	0	1,156	\$35 \$7	\$40,460 \$8,400
-		X = 7		1	-	•	,		1.7
B-6	-	Disposal of Unusable or Surplus Material	CY	110	1.20	0	132	\$25	\$3,300
B-7		Relocate Sewer Service (4-Inch)	LF	161	1.00	0	161	\$250	\$40,250
B-8	55.02	Furnish and Install Pipe (6-Inch, Type S, CPEP)	LF	26	1.00	0	26	\$60	\$1,560
B-9		Furnish, Install, and Televise Pipe (12-Inch, Type S, CPEP)	LF	1,130	1.00	0	1,130	\$75	\$84,750
B-10	55.04	Connect to Existing Storm Drain System	EA	3	1.00	0	3	\$3,500	\$10,500
B-11	55.05	Construct (Type I) Manhole	EA	8	1.00	0	8	\$7,000	\$56,000
B-12		Construct (Type II) Bypass Manhole	EA	2	1.00	0	2	\$30,000	\$60,000
B-13	55.09	Construct Catch Basin	EA	14		0	14	\$6,000	\$84,000
B-14	55.11	Remove Manhole	EA	1	1.00	0	1	\$1,200	\$1,200
B-15		Remove Catch Basin	EA	4	1.00	0	4	\$1,000	\$4,000
B-16		Oil and Grit Separator (Stormceptor STC 450i)	EA	2	1.00	0	2	\$30,000	\$60,000
B-17		Heat Trace	LF	210	1.10	-1	230	\$52	\$11,960
B-18	55.27	Storm Drain Bypass System	LS	1	1.00	0	1	\$20,000	\$20,000
B-19	55.28	Construct Infiltration Trench	LS	1	1.00	0	1	\$30,000	\$30,000
B-20	70.07	Remove Pipe	LF	351	1.00	0	351	\$15	\$5,265
B-21	80.02	Trench and Backfill (2'W x 3.5'D)	LF	20	1.10	-1	20	\$25	\$500
B-22	80.04	Load Center Foundation (Type 1A)	EA	1	1.00	0	1	\$6,900	\$6,900
B-23	80.07	Liquid-Tight Flexible Metal Conduit (1 inch)	LF	30	1.05	0	32	\$24	\$768
B-24	80.07	GRC Steel Conduit (1-1/2 inch)	LF	20	1.05	0	21	\$16	\$336
B-25	80.08	Junction Box (Type 1A)	EA	1	1.00	0	1	\$1,250	\$1,250
B-26	80.08	Junction Box (Type 2)	EA	1	1.00	0	1	\$1,850	\$1,850
B-27	80.10	Conductor, 3C #8 AWG XHHW-2 Cable	LF	20	1.10	-1	20	\$8	\$160
B-28	80.14	Single-Meter Pad-Mount Load Center, Type 1A, with Heat Trace Control	EA	1	1.00	0	1	\$14,250	\$14,250
		· · · · · · · · · · · · · · · · · · ·	÷				•	TOTAL	\$604,079

ENGINEER'S ESTIMATE - FINAL DSM - ALTERNATIVE 1

								TOTAL	\$267,856
C-16	80.23	Spare Luminaire (8000 Lm, Medium, Type 2)	EA	2	1.00	0	2	\$565	\$1,130
C-15	80.23	Spare Luminaire (5000 Lm, Medium, Type 2)	EA	2	1.00	0	2	\$411	\$822
C-14	80.23	Luminaire (8000 Lm, Medium, Type 2)	EA	5	1.00	0	5	\$715	\$3,575
C-13	80.23	Luminaire (5000 Lm, Medium, Type 2)	EA	9	1.00	0	9	\$561	\$5,049
C-12	80.14	Single-Meter Pad-Mount Load Center, Type 1A, with Lighting Control	EA	1	1.00	0	1	\$9,100	\$9,100
C-11	80.10	3 Conductor 8 AWG Type XHHW-2 Cable	FT	2,212	1.05	-1	2,320	\$8	\$18,560
C-10	80.08	Junction Box (Type II)	EA	1	1.00	0	1	\$1,900	\$1,900
C-9	80.08	Junction Box (Type IA)	EA	15	1.00	0	15	\$1,250	\$18,750
C-8	80.07	GRC Steel Conduit (2 inch)	FT	1,607	1.05	-1	1,690	\$23	\$38,870
C-7	80.05	Luminaire Arm (6-17 Ft. Length)	EA	15	1.00	0	15	\$850	\$12,750
C-6	80.05	Spare Fixed Base Luminaire Pole (28 Ft. Length)	EA	1	1.00	0	1	\$3,750	\$3,750
C-5	80.05	Fixed Base Luminaire Pole (26-29 Ft. Length)	EA	14	1.00	0	14	\$4,800	\$67,200
C-4	80.04	Load Center Foundation (Type 1A)	EA	1	1.00	0	1	\$6,900	\$6,900
C-3	80.04	Cast-In-Place Luminaire Pole Foundations	EA	14	1.00	0	14	\$2,900	\$40,600
C-2	80.02	Trench and Backfill (2'W x 3.5'D)	LF	1,549	1.10	-1	1,700	\$17	\$28,900
C-1	80.01	Temporary Illumination	LS	1	1.00	0	1	\$10,000	\$10,000
Schedul	e C - Illu	mination Improvements							
No.	No.	ITEM DESCRIPTION	UNIT	QUANT	FACTOR	FACTOR	EST QUANT	UNIT PRICE	TOTAL COST
ITEM	MASS	ITEM DECODIDITION		CALC.	CONT.	ROUND	FOT OUMNIT		TOTAL COOT

 Schedule A - Roadway Improvements
 \$2,905,344

 Schedule B - Drainage Improvements
 \$604,079

 Schedule C - Illumination Improvements
 \$267,856

Total Estimated Construction Cost: \$3,777,279

Utility Relocation Cost Estir	nate Summary
Alternative 1	
Electric (CEA)	\$15,000
Telephone (ACS)	\$0
Cable Television (GCI)	\$0
Natural Gas (ENSTAR)	\$102,000
Subtotal:	\$117,000
Construction Contingency (15%)	\$18,000
Total Utility Relocation Cost:	\$135,000

Norann Subdivision Area Road Reconstruction MOA Project No. 20-14 Alternative 1 CEA Relocation Summary

ld No.	APPROX. STATION	OFFSET	UTILITY CONFLICT	DESCRIPTION OF CONFLICT	RECOMMENDED ACTION	AMOUNT	UNIT	UNIT PRICE	COST
CEA-1	10+97	LT	Luminaire Pole	Installation of New Roadway Lighting	Remove	1	EA	\$2,197	\$2,197
CEA-2	12+23	LT	Luminaire Pole	Installation of New Roadway Lighting	Remove	1	EA	\$2,197	\$2,197
CEA-3	14+15	LT	Luminaire Pole	Installation of New Roadway Lighting	Remove	1	EA	\$2,197	\$2,197
CEA-4	17+87	LT	Luminaire Pole	Installation of New Roadway Lighting	Remove	1	EA	\$2,197	\$2,197
CEA-5	19+81	RT	Utility Pole	Retaining Wall Installation	Protect in Place, Shore as Required	1	EA	\$0	\$0
CEA-6	34+30	LT	Luminaire Pole	Installation of New Roadway Lighting	Remove	1	EA	\$2,197	\$2,197
CEA-7	37+38	RT	Utility Pole	Installation of Sidewalk	Protect in Place, Shore as Required	1	EA	\$0	\$0

Construction Costs: \$10,985

Engineering/Administration (30%): \$3,296

Total: \$15,000

Norann Subdivision Area Road Reconstruction MOA Project No. 20-14 Alternative 1 ACS Relocation Summary

ld No.	APPROX. STATION	OFFSET	UTILITY CONFLICT	DESCRIPTION OF CONFLICT	RECOMMENDED ACTION	AMOUNT	UNIT	UNIT PRICE	СОЅТ
ACS-1	19+93	Crossing	UG Fiber Optic Cable	Roadway Structural Section, Storm Drain Pipe	Protect in Place, Shore as Required	20	LF	\$0	\$0
ACS-2	19+93	Crossing	UG Copper Cable	Roadway Structural Section, Storm Drain Pipe	Protect in Place, Shore as Required	20	LF	\$0	\$0
ACS-3	37+50	Crossing	UG Fiber Optic Cable	Roadway Structural Section, Storm Drain Pipe, Catch Basin	Protect in Place, Shore as Required	59	LF	\$0	\$0
ACS-4	37+50	Crossing	UG Copper Cable	Roadway Structural Section, Storm Drain Pipe, Catch Basin	Protect in Place, Shore as Required	59	LF	\$0	\$0
							Cons	truction Costs:	\$0

Engineering/Administration (30%): \$0

Total: \$0

Norann Subdivision Area Road Reconstruction MOA Project No. 20-14 Alternative 1 GCI Relocation Summary

ld No.	APPROX. STATION	OFFSET	UTILITY CONFLICT	DESCRIPTION OF CONFLICT	RECOMMENDED ACTION	AMOUNT	UNIT	UNIT PRICE	COST
GCI-1	19+81	RT	Utility Pole	Retaining Wall Installation	Protect in Place	1	EA	\$0	\$0
GCI-2	37+38	RT	Utility Pole	Installation of Sidewalk	Protect in Place	1	EA	\$0	\$0
									4 -

Construction Costs: \$0

Engineering/Administration (30%) \$0

Total: \$0

Norann Subdivision Area Road Reconstruction MOA Project No. 20-14 Alternative 1 ENSTAR Relocation Summary

ld No.	APPROX. STATION	OFFSET	UTILITY CONFLICT	DESCRIPTION OF CONFLICT	RECOMMENDED ACTION	AMOUNT	UNIT	UNIT PRICE	соѕт
ENSTAR-1	10+52 to 12+09	RT	2-inch Steel	Roadway Structural Section	Verify Depth, Relocate as Required	166	LF	\$172	\$28,502
ENSTAR-2	12+03	Crossing	2-inch Steel	Roadway Structural Section	Verify Depth, Relocate as Required	49	LF	\$172	\$8,413
ENSTAR-3	12+33 to 12+55	RT	1 1/4-inch Steel	Storm Drain Pipe	Verify Depth, Relocate as Required	29	LF	\$148	\$4,304
ENSTAR-4	19+87	Crossing	4-inch Steel	Storm Drain Pipe, Roadway Structural Section	Relocate as Required	30	LF	\$192	\$5,769
ENSTAR-5	36+19 to 37+33	RT	4-inch Steel	Within Roadway Cut Slope, Reduced Cover	Verify Depth, Relocate as Required	114	LF	\$192	\$21,922
ENSTAR-6	36+20	Crossing	4-inch Steel	Roadway Structural Section	Relocate as Required	47	LF	\$192	\$9,038
ENSTAR-7	37+44 to 37+44	RT	4-inch Steel	Roadway Structural Section	Protect in Place	32	LF	\$0	\$0

Construction Costs: \$77,948

Engineering/Administration (30%) \$23,385

Total: \$102,000

Date: 12/1/2023	Basis:		Prepared By:	CRW	Ver. 5.1
Project: Norann Subd	ivision Area Road Reconstruction			Alternative 1	
Project Number:	20-14		[B]=local bond; [S]]=state grant; [F]= federal g	rant
DESIGN	Design Management	\$55,371		WEBPAG	CF DATA
	? PM&E Design Services	\$0		Environ	\$0
510.720.	PM&E Design Survey	\$0 \$0		DS	\$211,343
	PM&E Design Soil	\$0		Prelim Dsgn	\$422,685
	Contractual Dsgn Sers (Basic)	\$450,000		Final Dsgn	\$211,343
	Contractual Dsgn Sers (Add'l)	\$250,000		ROW	\$79,000
	Contractual Design Survey	\$60,000		Utilities	\$135,000
	Contractual Design Soils	\$30,000		Const	\$5,755,220
	Miscellaneous	\$0		Total	\$6,814,590
Subtotal	•		\$845,371		. , ,
	_				
UTILITIES	AWWU	\$0			
Start 20?	? MOA Shoring	\$0			
	CEA	\$17,000			
	ACS	\$0			
	GCI	\$0			
	Enstar	\$118,000	_		
Subtotal	-		\$135,000)	
DOW	Derl Freiter Comission	¢(2,000			
ROW	Real Estate Services	\$63,000			
	? Land Acquisition	\$16,000		N	
Subtotal			\$79,000)	
CONSTRUCTION	Construction Management	\$86,871			
Start 20?	? Inspection	\$230,397			
	Materials Testing	\$37,770			
	Survey	\$33,993			
	Miscellaneous	\$0			
	Construction Contract	\$3,777,000			
Subtotal	•		\$4,166,031	l	
		¢1 0 22 102			
MISCELLANEOUS	Bond Overhead (15.0%)	\$1,022,189			
	Grant Overhead (0.0%)	\$0			
	Contingency (15%)	\$567,000		,	
Subtotal			\$1,589,189	<u>)</u>	
PROJECT TOTAL			\$6,814,590)	

ENGINEER'S ESTIMATE - FINAL DSM - ALTERNATIVE 2

ITEM	MASS	ITEM DESCRIPTION	UNIT	CALC.	CONT.	ROUND	EST QUANT	UNIT PRICE	TOTAL COST
No.	No.		Giail	QUANT	FACTOR	FACTOR	201 00/101	SHITTIGE	
		adway Improvements			1.00	0			* 22 222
A-1		Storm Water Pollution Prevention Plan (Type 3)	LS	1	1.00	0	1	\$32,000	\$32,000
A-2		Test Pit for Utility Locate	Hour	24	1.00	0	24	\$800	\$19,200
A-3		Clearing and Grubbing	LS SY	1	1.00	0	1 370	\$32,000	\$32,000
A-4 A-5		Remove Sidewalk or Concrete Apron	LF	2,778	1.00	0	2,778	\$35 \$12	\$12,950
A-5 A-6		Remove Curb and Gutter Remove Pavement	SY	6.588	1.00	0	6.588	\$12	\$33,336 \$26,352
A-6 A-7		Unusable Excavation	CY	0,588	1.00	-2	14,300	\$4 \$21	\$26,352 \$300,300
A-7 A-8		Dewatering	LS	11,009	1.20	-2	14,300	\$13,000	\$300,300
A-0 A-9	-	Classified Fill and Backfill (Type II)	Ton	11,303	1.00	-2	13,600	\$13,000	\$13,000
A-9 A-10		Classified Fill and Backfill (Type II-A)	Ton	9,730	1.20	-2	11,700	\$21	\$285,600
A-10	-	Leveling Course	Ton	9,730 748	1.20	-2	790	\$60	\$243,700
A-11 A-12		Geotextile (Type A)	SY	10.074	1.00	-1	10,070	\$00 \$2	\$47,400
A-12 A-13		Insulation Board (R-9)	SF	71,936	1.00	-1	72,660	\$2 \$4	\$20,140
A-13 A-14		Insulation Board (R-9)	SF	6,907	1.01	-1	6,980	\$4	\$290,840
A-14 A-15		P.C.C. Curb and Gutter (All Types)	LF	3,398	1.01	-1	3,398	\$40	\$20,940
A-15 A-16		P.C.C. Sidewalk (Standard Finish)	SY	1,038	1.00	0	1,038	\$100	\$133,920
A-10 A-18		P.C.C. Curb Ramp (6" Thick)	EA	1,038	1.00	0	6	\$4,500	\$103,800
A-10 A-19		Detectable Warnings	SF	72	1.00	0	72	\$4,300	\$27,000
A-19 A-20		P.C.C. Structures/Retaining Wall (Class AA-3)	CY	10	1.00	0	12	\$500	\$10,800
A-20 A-20		Colored Concrete (Red, Imprinted)	CY	512	1.15	0	589	\$300	\$176,700
A-20		A.C. Pavement (Class A)	Ton	35	1.15	-1	40	\$300	\$9,600
A-21		A.C. Pavement (Class E)	Ton	757	1.00	-1	800	\$175	\$9,000
A-22 A-23		Remove and Replace Manhole Cone Section	EA	6	1.00	-1	6	\$2,650	\$140,000
A-23		Remove and Replace Manhole Cover and Frame	EA	2	1.00	0	2	\$2,030	\$13,900
A-24 A-25		Adjust Storm Drain Manhole Ring to Finish Grade	EA	2	1.00	0	2	\$1,400	\$2,000
A-26		Remove and Replace Valve Box Top Section	EA	5	1.00	0	5	\$700	\$3,500
A-20		Adjust Key Box	EA	15	1.00	0	15	\$600	\$9,000
A-27		Construction Survey Measurement	LS	13	1.00	0	1	\$50,000	\$50,000
A-29	65.02	Two-Person Survey Crew	Hour	40	1.00	0	40	\$250	\$10,000
A-30		Remove and Reset Fence	LF	927	1.00	0	973	\$55	\$53,515
A-31		Remove Fence	LF	425	1.00	0	425	\$14	\$5,950
A-32		Remove and Reset Gate	LF	32	1.00	0	32	\$20	\$640
A-33		Inlaid Traffic Markings (Methyl Methacrylate, 4" Yellow, 125 Mil)	LF	188	1.00	0	188	\$20	\$3,760
A-34		Inlaid Traffic Markings (Methyl Methacrylate, 24" White, 125 Mil)	LF	34	1.00	0	34	\$100	\$3,400
A-34		Inlaid Traffic Markings (Methyl Methacrylate, Words & Symbols, 125 Mil)	EA	2	1.00	0	2	\$1,100	\$2,200
A-35		Standard Sign	SF	41	1.00	0	41	\$110	\$4,510
A-36	70.12	Traffic Maintenance	LS	1	1.00	0	1	\$200,000	\$200,000
A-37	70.12	Temporary Group Mailboxes	LS	1	1.00	0	1	\$7,000	\$7,000
A-38		Relocate Mailbox	EA	41	1.00	0	41	\$800	\$32,800
A-39		Removal/Disposal and/or Salvage/Installation of Obstructions	LS	1	1.00	0	1	\$20,000	\$20,000
A-40	-	Temporary Fencing	LE	959	1.00	0	1,007	\$20,000	\$20,000
A-40	75.12	Temporary Tree Protection Fence	LF	450	1.00	0	450	\$18	\$8,100
A-42		Landscaping	LS	400	1.00	0	1	\$25,000	\$25,000
	/0.10		1.25	•		ı ~		TOTAL	\$2,469,593

ITEM	MASS	ITEM DESCRIPTION	UNIT	CALC.	CONT.	ROUND	EST QUANT	UNIT PRICE	TOTAL COST
No.	No.	inage Improvements	-	QUANT	FACTOR	FACTOR			
B-1		Trench Dewatering	LS	1	1.00	0	1	\$30,000	\$30,000
B-1 B-2		Trench Excavation and Backfill (Various Depths)	LS	1.708	1.00	0	1.708	\$30,000	\$59,780
B-3		Furnish Trench Backfill (Type II)	Ton	510	1.00	0	612	\$20	\$12,240
B-3		Bedding Material (Class D)	LF	1,708	1.20	0	1,708	\$35	\$59,780
B-5	20.26	Insulation Board (R-18)	SF	1,000	1.20	0	1,200	\$7	\$8,400
B-6		Disposal of Unusable or Surplus Material	CY	400	1.20	0	480	\$25	\$12,000
B-7		Relocate Sewer Service (4-Inch)	LF	540	1.20	0	540	\$250	\$135,000
B-8		Furnish and Install Pipe (6-Inch, Type S, CPEP)	LF	26	1.00	0	26	\$60	\$1,560
B-9		Furnish Install, and Televise Pipe (12-Inch, Type S, CPEP)	LF	1,378	1.00	0	1,378	\$75	\$103,350
B-10		Furnish, Install, and Televise Pipe (15-Inch, Type S, CPEP)	LF	305	1.00	0	305	\$90	\$27,450
B-11	55.04	Connect to Existing Storm Drain System	EA	3	1.00	0	3	\$3,500	\$10,500
B-12	55.05	Construct (Type I) Manhole	EA	13	1.00	0	13	\$7,000	\$91,000
B-13		Construct (Type II) Bypass Manhole	EA	2	1.00	0	2	\$30,000	\$60,000
B-14	55.09	Construct Catch Basin	EA	20	1.00	0	20	\$6,000	\$120,000
B-15	55.11	Remove Manhole	EA	1	1.00	0	1	\$1,200	\$1,200
B-16		Remove Catch Basin	EA	4	1.00	0	4	\$1,000	\$4,000
B-17		Abandon Storm Drain Pipe	EA	1	1.00	0	1	\$5,000	\$5,000
B-18		Oil and Grit Separator (Stormceptor STC 450i)	EA	2	1.00	0	2	\$30,000	\$60,000
B-19		Heat Trace	LF	570	1.10	-1	630	\$52	\$32,760
B-20		Storm Drain Bypass System	LS	1	1.00	0	1	\$15,000	\$15,000
B-21		Raise or Lower Water Main (10-Inch Cast Iron)	EA	1	1.00	0	1	\$20,000	\$20,000
B-22		Furnish and Install (1-Inch, Copper) Water Service Line	LF	533	1.00	0	533	\$200	\$106,600
B-23		Remove Pipe	LF	351	1.00	0	351	\$15	\$5,265
B-24	80.02	Trench and Backfill (2'W x 3.5'D)	LF	140	1.10	-1	150	\$25	\$3,750
B-25	80.04	Load Center Foundation (Type 1A)	EA	1	1.00	0	1	\$6,900	\$6,900
B-26		Liquid-Tight Flexible Metal Conduit (1 inch)	LF	140	1.05	-1	150	\$24	\$3,600
B-27		GRC Steel Conduit (1-1/2 inch)	LF	570	1.05	-1	600	\$16	\$9,600
B-28	80.08	Junction Box (Type 1A)	EA	1	1.00	0	1	\$1,250	\$1,250
B-29	80.08	Junction Box (Type 2)	EA	2	1.00	0	2	\$1,850	\$3,700
B-30	80.10	Conductor, 3C #8 AWG XHHW-2 Cable	LF	60	1.10	-1	70	\$8	\$560
B-31	80.10	Conductor, 3C #10 AWG XHHW-2 Cable	LF	250	1.10	-1	280	\$7	\$1,960
B-32	80.14	Single-Meter Pad-Mount Load Center, Type 1A, with Heat Trace Control	EA	1	1.00	0	1	\$14,250	\$14,250
				•		•	•	TOTAL	\$1,026,455

CRW Engineering Group, Inc. 20-14 Norann Engineers Estimate_Alt 2.xlsx

ENGINEER'S ESTIMATE - FINAL DSM - ALTERNATIVE 2

ITEM	MASS	ITEM DESCRIPTION	UNIT	CALC.	CONT.	ROUND	EST QUANT	UNIT PRICE	TOTAL COST
No.	No.		0	QUANT	FACTOR	FACTOR	201 00/111	or an ended	10112 0001
Schedul	e C - Illu	mination Improvements							
C-1	80.01	Temporary Illumination	LS	1	1.00	0	1	\$10,000	\$10,000
C-2	80.02	Trench and Backfill (2'W x 3.5'D)	LF	1,549	1.10	-1	1,700	\$17	\$28,900
C-3	80.04	Cast-In-Place Luminaire Pole Foundations	EA	14	1.00	0	14	\$2,900	\$40,600
C-4	80.04	Load Center Foundation (Type 1A)	EA	1	1.00	0	1	\$6,900	\$6,900
C-5	80.05	Fixed Base Luminaire Pole (26-29 Ft. Length)	EA	14	1.00	0	14	\$4,800	\$67,200
C-6	80.05	Spare Fixed Base Luminaire Pole (28 Ft. Length)	EA	1	1.00	0	1	\$3,750	\$3,750
C-7	80.05	Luminaire Arm (6-17 Ft. Length)	EA	15	1.00	0	15	\$850	\$12,750
C-8	80.07	GRC Steel Conduit (2 inch)	FT	1,607	1.05	-1	1,690	\$23	\$38,870
C-9	80.08	Junction Box (Type IA)	EA	15	1.00	0	15	\$1,250	\$18,750
C-10	80.08	Junction Box (Type II)	EA	1	1.00	0	1	\$1,900	\$1,900
C-11	80.10	3 Conductor 8 AWG Type XHHW-2 Cable	FT	2,212	1.05	-1	2,320	\$8	\$18,560
C-12	80.14	Single-Meter Pad-Mount Load Center, Type 1A, with Lighting Control	EA	1	1.00	0	1	\$9,100	\$9,100
C-13	80.23	Luminaire (5000 Lm, Medium, Type 2)	EA	9	1.00	0	9	\$561	\$5,049
C-14	80.23	Luminaire (8000 Lm, Medium, Type 2)	EA	5	1.00	0	5	\$715	\$3,575
C-15	80.23	Spare Luminaire (5000 Lm, Medium, Type 2)	EA	2	1.00	0	2	\$411	\$822
C-16	80.23	Spare Luminaire (8000 Lm, Medium, Type 2)	EA	2	1.00	0	2	\$565	\$1,130
								TOTAL	\$267,856

 Schedule A - Roadway Improvements
 \$2,469,593

 Schedule B - Drainage Improvements
 \$1,026,455

 Schedule C - Illumination Improvements
 \$267,856

Total Estimated Construction Cost: \$3,763,904

Utility Relocation Cost Estin Alternative 2	•
Electric (CEA)	\$15,000
Telephone (ACS)	\$0
Cable Television (GCl)	\$0
Natural Gas (ENSTAR)	\$85,000
Subtotal:	\$100,000
Construction Contingency (15%)	\$15,000
Total Utility Relocation Cost:	\$115,000

Norann Subdivision Area Road Reconstruction MOA Project No. 20-14 Alternative 2 CEA Relocation Summary

Id No.	APPROX. STATION	OFFSET	UTILITY CONFLICT	DESCRIPTION OF CONFLICT	RECOMMENDED ACTION	AMOUNT	UNIT	UNIT PRICE	COST
CEA-1	11+01	LT	Luminaire Pole	Installation of New Roadway Lighting	Remove	1	EA	\$2,197	\$2,197
CEA-2	12+29	LT	Luminaire Pole	Installation of New Roadway Lighting	Remove	1	EA	\$2,197	\$2,197
CEA-3	14+17	LT	Luminaire Pole	Installation of New Roadway Lighting	Remove	1	EA	\$2,197	\$2,197
CEA-4	17+88	LT	Luminaire Pole	Installation of New Roadway Lighting	Remove	1	EA	\$2,197	\$2,197
CEA-5	19+81	RT	Utility Pole	Installation of New Retaining Wall	Protect in Place, Shore as Required	1	EA	\$0	\$0
CEA-6	34+30	LT	Luminaire Pole	Installation of New Roadway Lighting	Remove	1	EA	\$2,197	\$2,197
CEA-7	37+38	RT	Utility Pole	Installation of Sidewalk	Protect in Place, Shore as Required	1	EA	\$0	\$0

Construction Costs: \$10,985

Engineering/Administration (30%): \$3,296

Total: \$15,000

Norann Subdivision Area Road Reconstruction MOA Project No. 20-14 Alternative 2 ACS Relocation Summary

ld No.	APPROX. STATION	OFFSET	UTILITY CONFLICT	DESCRIPTION OF CONFLICT	RECOMMENDED ACTION	AMOUNT	UNIT	UNIT PRICE	СОЅТ
ACS-1	19+93	Crossing	UG Fiber Optic Cable	Roadway Structural Section, Storm Drain Pipe	Protect in Place, Shore as Required	20	LF	\$0	\$0
ACS-2	19+93	Crossing	UG Copper Cable	Roadway Structural Section, Storm Drain Pipe	Protect in Place, Shore as Required	20	LF	\$0	\$0
ACS-3	37+50	Crossing	UG Fiber Optic Cable	Roadway Structural Section, Storm Drain Pipe, Catch Basin	Protect in Place, Shore as Required	59	LF	\$0	\$0
ACS-4	37+50	Crossing	UG Copper Cable	Roadway Structural Section, Storm Drain Pipe, Catch Basin	Protect in Place, Shore as Required	59	LF	\$0	\$0
							Cons	truction Costs:	\$0

Engineering/Administration (30%): \$0

Total: \$0

Norann Subdivision Area Road Reconstruction MOA Project No. 20-14 Alternative 2 GCI Relocation Summary

ld No.	APPROX. STATION	OFFSET	UTILITY CONFLICT	DESCRIPTION OF CONFLICT	RECOMMENDED ACTION	AMOUNT	UNIT	UNIT PRICE	COST
GCI-1	19+81	RT	Utility Pole	Installation of New Retaining Wall	Protect in Place	1	EA	\$0	\$0
GCI-2	37+38	RT	Utility Pole	Installation of Sidewalk	Protect in Place	1	EA	\$0	\$0
									4 -

Construction Costs: \$0

Engineering/Administration (30%) \$0

Total: \$0

Norann Subdivision Area Road Reconstruction MOA Project No. 20-14 Alternative 2 ENSTAR Relocation Summary

ld No.	APPROX. STATION	OFFSET	UTILITY CONFLICT	DESCRIPTION OF CONFLICT	RECOMMENDED ACTION	AMOUNT	UNIT	UNIT PRICE	соѕт
ENSTAR-1	10+52 to 12+09	RT	2-inch Steel	Roadway Structural Section, Storm Drain Pipe, Catch Basin	Verify Depth and Location, Relocate as Required	155	LF	\$172	\$26,614
ENSTAR-2	12+08	Crossing	2-inch Steel	Roadway Structural Section, Storm Drain Pipe	Verify Depth, Relocate as Required	54	LF	\$172	\$9,272
ENSTAR-3	19+87	Crossing	4-inch Steel	Roadway Structural Section, Storm Drain Pipe	Protect in Place, Shore as Required	82	LF	\$0	\$0
ENSTAR-4	36+19 to 37+33	RT	4-inch Steel	Within Roadway Cut Slope, Reduced Cover	Verify Depth, Relocate as Required	114	LF	\$192	\$21,922
ENSTAR-5	36+20	Crossing	4-inch Steel	Roadway Structural Section	Relocate as Required	39	LF	\$192	\$7,500
ENSTAR-6	37+33 to 37+44	RT	4-inch Steel	Roadway Structural Section	Protect in Place	37	LF	\$0	\$0

Construction Costs: \$65,307

Engineering/Administration (30%) \$19,592

Total: \$85,000

Date: 12/1/2	023	Basis:		Prepared By:	CRW		Ver. 5.1
Project: Nor	ann Subdiv	vision Area Road Reconstruction			Alterna	tive 2	
Project Nun	ıber:	20-14		[B]=local bond; [S]]=state gra	ant; [F]= federal gra	nt
PEGLON			*** 100				
DESIGN	G((2 022	Design Management	\$55,180			WEBPAGE	
	Start 20??	PM&E Design Services	\$0			Environ	\$0
		PM&E Design Survey	\$0 \$0			DS	\$211,295
		PM&E Design Soil	\$0			Prelim Dsgn	\$422,590
		Contractual Dsgn Sers (Basic)	\$450,000			Final Dsgn	\$211,295
		Contractual Dsgn Sers (Add'l)	\$250,000			ROW	\$66,000
		Contractual Design Survey	\$60,000			Utilities	\$115,000
		Contractual Design Soils	\$30,000			Const	\$5,730,140
		Miscellaneous	\$0			Total	\$6,756,320
Subtotal				\$845,180)		
			* •				
UTILITIES		AWWU	\$0				
	Start 20??	e e	\$0				
		CEA	\$17,000				
		ACS	\$0				
		GCI	\$0				
		Enstar	\$98,000	-			
Subtotal				\$115,000)		
ROW		Real Estate Services	\$58,000				
10.0	Start 20??	Land Acquisition	\$8,000				
Subtotal	~~~~		+ • ,• • •	- \$66,000)		
Subtotut				\$00,000	, ,		
CONSTRUC	CTION	Construction Management	\$86,572				
	Start 20??	Inspection	\$229,604				
		Materials Testing	\$37,640				
		Survey	\$33,876				
		Miscellaneous	\$0				
		Construction Contract	\$3,764,000				
Subtotal		•		\$4,151,692	2		
				+ .,, ., -			
MISCELLA	NEOUS	Bond Overhead (15.0%)	\$1,013,448				
		Grant Overhead (0.0%)	\$0				
		Contingency (15%)	\$565,000				
Subtotal			· · · · ·	- \$1,578,448	3		
					_		
PROJECT	FOTAL			\$6,756,320)		

Summary of Driveway Grades

DRIVEW	AY SUMMA	RY - ALTER	NATIVE	1		
		CENTE	RLINE	EVICTING		
SHEET	PARCEL	REFER	ENCE	EXISTING	PROPOSED	REMARKS
		STATION	OFFSET	GRADE	GRADE	
A1.1	22	10+19.98	RT	2.7%	3.7%	
A1.1	23	10+80.06	RT	0.1%	1.0%	
A1.1	24	11+36.56	RT	4.8%	4.0%	
A1.1	20 West	11+61.83	LT	14.5%	14.6%	
A1.1	25	11+92.28	RT	6.0%	1.9%	
A1.1	26	12+41.80	RT	1.9%	2.9%	
A1.1	27	12+50.61	RT	0.8%	1.7%	
A1.1	47	12+92.98	LT	11.9%	12.7%	
A1.1	28	13+55.60	RT	4.5%	3.1%	
A1.1	29	13+71.34	RT	7.2%	5.2%	
A1.1	30	14+40.04	RT	6.3%	7.0%	
A1.1	31	14+56.19	RT	5.6%	6.6%	
A1.1	46	14+77.77	LT	5.5%	9.4%	
A1.2	32	15+22.66	RT	3.7%	5.2%	
A1.2	45	15+32.60	LT	10.4%	10.8%	
A1.2	44	15+93.76	LT	11.8%	12.0%	
A1.2	33	16+28.51	RT	3.5%	8.2%	
A1.2	34	16+57.08	RT	6.7%	12.0%	
A1.2	43	16+58.72	LT	11.2%	12.0%	
A1.2	42	16+92.77	LT	8.3%	10.0%	
A1.2	35	17+60.11	RT	9.2%	11.0%	
A1.2	41	17+69.58	LT	11.5%	12.0%	
A1.2	36	18+20.43	RT	8.9%	10.8%	
A1.2	40	18+37.28	LT	8.2%	8.0%	
A1.2	39	18+78.96	LT	1.8%	5.4%	
A1.2	37	18+86.18	RT	7.2%	9.4%	
A1.2	38	19+12.57	RT	7.8%	9.7%	
A1.3	1	31+15.30	LT	7.5%	8.6%	
A1.3	20 (North)	31+16.49	RT	17.1%	12.6%	
A1.3	2	31+31.33	LT	7.5%	9.3%	
A1.3	19	31+75.63	RT	12.4%	9.6%	
A1.3	18	31+96.41	RT	12.0%	10.6%	
A1.3	3	32+34.21	LT	7.2%	7.8%	
A1.3	4	32+92.79	LT	10.2%	9.3%	
A1.3	17	32+99.57	RT	10.0%	11.5%	
A1.3	5	33+10.51	LT	10.7%	9.9%	
A1.3	16	33+22.46	RT	10.3%	11.9%	
A1 /	15	2/1+16 22	RT	1/1 20/	12 70/	
A1.4 A1.4	6	34+16.22 34+17.21	LT	14.3% 10.6%	13.7% 11.0%	
A1.4 A1.4	14	34+17.21 34+32.42	RT	10.6%	11.0%	
A1.4 A1.4	7	34+32.42	LT	5.4%	8.4%	
A1.4 A1.4	8	34+73.74	LT	3.1%	6.4%	
A1.4 A1.4	13	35+33.70	RT	9.7%	0.4%	
A1.4 A1.4	9	35+93.99	LT	2.6%	2.4%	
A1.4 A1.4	12	35+98.54	RT	5.1%	9.1%	

DRIVEW	AY SUMMA	RY - ALTER	NATIVE	2		
		CENTE	RLINE	EVICTING		
SHEET	PARCEL	REFER	ENCE	EXISTING	PROPOSED	REMARKS
		STATION	OFFSET	GRADE	GRADE	
A2.1	22	10+24.77	RT	2.7%	5.0%	
A2.1	23	10+84.86	RT	0.1%	5.0%	
A2.1	24	11+41.37	RT	4.8%	5.7%	
A2.1	20 West	11+66.59	LT	14.5%	12.4%	
A2.1	25	11+96.68	RT	6.0%	2.3%	
A2.1	26	12+46.16	RT	1.9%	3.1%	
A2.1	27	12+55.16	RT	0.8%	3.3%	
A2.1	47	12+96.96	LT	11.9%	12.0%	
A2.1	28	13+59.32	RT	4.5%	4.6%	
A2.1	29	13+73.36	RT	7.2%	6.4%	
A2.1	30	14+41.07	RT	6.3%	7.6%	
A2.1	31	14+56.54	RT	5.6%	7.1%	
A2.1	46	14+77.97	LT	5.5%	9.8%	
A2.2	32	15+22.66	RT	3.7%	6.1%	
A2.2	45	15+32.60	LT	10.4%	9.3%	
A2.2	44	15+94.06	LT	11.8%	11.2%	
A2.2	33	16+28.51	RT	3.5%	8.1%	
A2.2	34	16+57.08	RT	6.7%	10.2%	
A2.2	43	16+58.72	LT	11.2%	11.4%	
A2.2	42	16+92.77	LT	8.3%	9.3%	
A2.2	35	17+60.11	RT	9.2%	9.4%	
A2.2	41	17+69.58	LT	11.5%	11.2%	
A2.2	36	18+20.43	RT	8.9%	9.6%	
A2.2	40	18+37.28	LT	8.2%	6.9%	
A2.2	39	18+78.96	LT	1.8%	5.2%	
A2.2	37	18+86.18	RT	7.2%	9.2%	
A2.2	38	19+12.57	RT	7.8%	8.8%	
A2.3	1	31+15.30	LT	7.5%	7.9%	
A2.3	20 North	31+16.49	RT	17.1%	12.0%	
A2.3	2	31+31.33	LT	7.5%	8.1%	
A2.3	19	31+75.63	RT	12.4%	8.1%	
A2.3	18	31+96.41	RT	12.0%	9.0%	
A2.3	3	32+34.21	LT	7.2%	6.7%	
A2.3	4	32+92.79	LT	10.2%	8.2%	
A2.3	17	32+99.57	RT	10.0%	10.0%	
A2.3	5	33+10.51	LT	10.7%	9.2%	
A2.3	16	33+22.46	RT	12.2%	10.3%	
A2 4	15	24,16.22	рт	1/ 20/	14 20/	
A2.4	15	34+16.22	RT	14.3%	14.3% 8.0%	
A2.4	6	34+17.21	LT	10.6%		
A2.4	14 7	34+32.42	RT	15.4%	14.5%	
A2.4		34+75.74	LT	5.4%	4.0%	
A2.4	13	35+33.74	RT	9.7%	9.9% 5.1%	
A2.4	8	35+33.81	LT	3.1%	5.1%	
A2.4	<u> </u>	35+93.99 35+98.54	LT RT	2.6% 5.1%	3.7% 9.8%	

Draft Technical Memorandum

Draft Technical Memorandum

Date:	June 29, 2021
То:	Nichole Rehm (PTS, Inc.); Glenda Radvansky, Kris Langley (MOA Traffic Engineering); Paul VanLandingham (MOA Street Maintenance)
From:	Justin Keene; Rob Burdick (CRW Engineering Group, LLC)
Project:	Norann Subdivision Area Road Reconstruction
Project No:	PM&E #20-14 (CRW#10149.00)
Subject:	Draft Technical Memorandum

A. Purpose and Background

The Municipality of Anchorage Project Management and Engineering (MOA PM&E) has contracted with CRW Engineering Group, LLC (CRW) to provide professional services to develop and evaluate alternatives to upgrade the Norann Subdivision Area (see <u>FIGURE 1</u> for project location/limits including parcel number labels referenced in this document). The purpose of the project is to upgrade West 57th Avenue (57th Avenue) and West 58th Avenue (58th Avenue) from Cope Street to Arctic Boulevard and Cope Street from 57th to 58th Avenue to meet current MOA Design Criteria for a local roadway.

The purpose of this Technical Memorandum is to gain concurrence from MOA PM&E, MOA Traffic Engineering Department, and MOA Street Maintenance Department on the conceptual roadway design elements before presenting the concepts to the public and beginning the Design Study Memorandum (DSM). A meeting was held on June 22, 2021 with MOA PM&E, Traffic Engineering, and Street Maintenance to discuss the conceptual roadway design elements. This draft Technical Memorandum is being submitted for their review and comment.

B. Existing Conditions

1. <u>Neighborhood Context, Zoning, Private Improvements and Driveways</u>

The Norann Subdivision area is a local neighborhood situated west of Arctic Boulevard, south of West International Airport Road and north of Dowling Road. Alaska Railroad Corporation (ARRC) right-of-way (ROW) and an active railroad track is located adjacent to the southwest quadrant of the neighborhood. The main access into the neighborhood is from Arctic Boulevard east of the project limits, an alternate access is available from Cope Street north of the project limits. The majority of homes were built in the 1960s prior to the establishment of many MOA building and driveway codes.

The neighborhood is zoned as R-1 "single family residential" and R-3 "mixed residential", an alley located just west of Arctic Boulevard separates the single family residential area from the mixed residential area. The parcels directly adjacent to the project roadways consist of 41 single family homes, three 4-plexes, and one duplex.

Like many established neighborhoods, private improvements such as fences, retaining walls, mature trees and planters have been placed into the ROW. These private improvements hinder available snow storage areas. Some driveways appear to be wider than allowable based on current MOA Design Criteria for maximum width requirements and Parcels 20 and 47 have full frontage driveways. Most of the homes are higher than the adjacent roadway with positive drainage away from the garages, and some driveways are fairly steep.

June 29, 2021 Norann Subdivision Area Road Reconstruction (PM&E #20-14) Draft Technical Memorandum

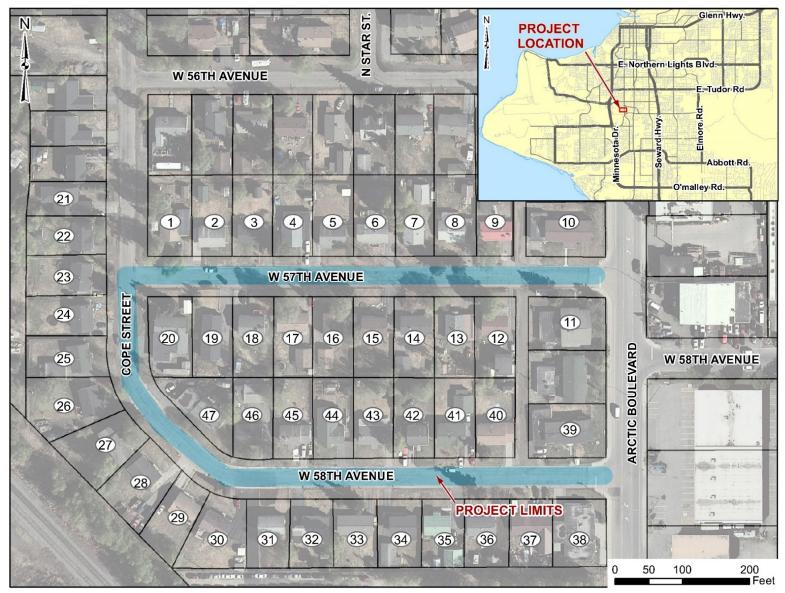


Figure 1 – Project Location and Limits Map

2. <u>Traffic and Parking Studies</u>

The posted speed along the entire project corridor is 25 miles per hour (mph). Existing daily traffic volumes and speeds were collected for this project in late May and early June 2021. The traffic data collected was adjusted for day and month, based on the nearest permanent Alaska Department of Transportation and Public Facilities (ADOT&PF) traffic recorder. The adjusted annual average daily traffic (AADT) volumes and 85th percentile speeds are shown below in <u>TABLE 1</u>.

Location	AADT	85 th Percentile Speed (mph)
W. 57 th Avenue west of alley	140	17
W. 58 th Avenue west of alley	170	19

A parking study was conducted to document the current use of on-street parking for consideration in the design of the proposed improvements. The parking study was based on observations from four separate site visits. Site visits were organized to include one weekday afternoon/evening and one weekend afternoon/evening and took place on Saturday, May 15, 2021 and Wednesday, May 19, 2021 (see <u>APPENDIX A</u> for the parking study memorandum). Parking demand is summarized below in <u>TABLE 2</u>. Based upon the study results there does not appear to be a need for a wider roadway to accommodate more on-street parking than what currently exists.

Segment	Maximum On-Street Parking Demand Observed (Vehicle Count)
W. 57 th Avenue	5
W. 58 th Avenue	5
Cope Street	2

Table 2. On-Street Parking Demand Summary

3. Roadways, Alleys and Drainage

The existing roadway grades in the project area are generally very flat, between approximately 0% and 1.3%. There are low spots along the roadways where drainage can't effectively drain to a catch basin, and during spring break up or large rain events these areas form large ponds in the roadway. The existing roadway pavement conditions are very poor with cracking, settling, and heaving conditions throughout many sections of the roadway. Rolled curb and gutter is present on 57th and 58th Avenue; however, some sections of curb are missing, broken, or are undulating. Cope Street has no curb and gutter. There are no sidewalks within the project area.

There is a gravel alley that connects 57th Avenue to 58th Avenue and a gravel alley between 57th Avenue and West 56th Avenue. These alleys provide access to the car ports and parking spaces for the 4-plexes located west of Arctic Boulevard.

Other existing roadway conditions are summarized in <u>TABLE 3</u> below.

Item	Value	Notes
Right-of-Way (ROW) Width:	60 ft. (roadways) 20 ft. (alleys)	Existing improvements are approximately centered in the ROW on 57 th & 58 th Avenue. Existing improvements on Cope Street are skewed to the west side of the ROW.
Roadway width: 57 th & 58 th Avenue Cope Street	32 ft. ¹ 21-25 ft. ²	
Curb Type	Type 2 (rolled)	No curb along Cope Street
Posted speed	25 mph	
Sidewalk width	N/A	None along the project corridor

Table 3. Existing Conditions – Roadway	Table 3.	Existing	Conditions -	Roadway
--	----------	----------	--------------	---------

1. Roadway width is measured from back of curb to back of curb.

2. Roadway width is measured from edge of pavement to edge of pavement.

At the intersections with Arctic Boulevard there are two curb inlet catch basins located at 58th Avenue and one curb inlet catch basin at 57th Avenue. There is a set of curb inlet catch basins on 58th Avenue as it transitions to Cope Street which are intended to be the low point where drainage flows from Arctic Boulevard and from Cope Street to the north. However drainage is not able to make it effectively to the low point due to the heaving and flat curb lines. These catch basins outfall to the southwest to a vegetated area within the ARRC ROW.

4. <u>Utilities</u>

The neighborhood is served by Anchorage Water and Wastewater (AWWU) water and sewer mains. The mains are located in non-standard locations, approximately 7 feet within each side of the ROW lines. The project area is also served by overhead utilities including electric, cable television, and telephone/communication lines which run along the backside of the parcels. Natural gas mains also run primarily along the backside of parcels with the exception of the gas main along Cope Street and on 57th Avenue between the alley and Arctic Boulevard. Further information regarding the existing water/sewer systems and utilities, and any impacts to these systems, will be analyzed and discussed in the DSM.

5. <u>Illumination</u>

The project roadways, within the project area, do not currently have continuous roadway lighting. Illumination currently only exists intermittently as follows: One light on 58th Avenue just west of the alley, two lights on the horizontal curve as 58th Avenue transitions into Cope Street, one on Cope Street at the 57th Avenue/Cope Street intersection, and one about mid-block on 57th Avenue. The street lights are owned by CEA and consist of luminaire arms mounted to wooden utility poles. It is anticipated that the roadway lighting along the project corridor will be upgraded to meet current MOA lighting standards. A full illumination analysis and design recommendations will be provided in the DSM.

6. <u>Survey Questionnaire</u>

A survey questionnaire was mailed and e-mailed out to the residents/owners within the project limits in February of 2021. A total of 19 responses were received, of which all owned the property (see <u>APPENDIX B</u> for questionnaire responses). Relevant roadway related responses to the questions are summarized in <u>TABLE 4</u>.

Question	Answers	
Do you have concerns about speeding along the streets within the project area?	No (17) Yes (2)	
Do you think there should be additional space in the roadway for on-street parking within the project limits?	No (15) Yes (3)	
Are you aware of any sight distance problems within the project limits that may need to be corrected as part of the project?	No (15) Yes (3)	
Do you think pedestrian facilities (e.g. sidewalks) should be constructed as part of this project?	No (12) Yes (7)	
If yes for pedestrian facilities, on one side or both sides of the roadway?	Both (4) One (3)	

Table 4. Questionnaire	Responses
------------------------	-----------

C. Design Challenges

Some of the significant design challenges associated with the Norann project area include:

- Street grades are typically flat, as low as 0% percent in some locations and most of the curb is heaving and not draining adequately. Roadway improvements may require forced high and low spots to facilitate adequate drainage. Matching into the existing driveways may be a challenge with the forced low spots and steep driveways.
- Removal of private improvements in the ROW to provide adequate snow storage will likely be a sensitive topic with residents.
- A few parcels have full-frontage access to their driveways or garages, and some driveways have wider than the allowable maximum driveway widths. Residents may resist eliminating their fullfrontage access with the construction of barrier curb with driveway cuts. Only if approved by MOA Traffic Engineering Department, some parcels may be allowed to keep wider than allowable driveways. A design variance waiver will be required for installing a wider than allowable driveway.
- Several parcels have private retaining walls near the existing curb. Removal of these retaining walls to install the proposed improvements may require new retaining walls or extensive grading to match into the existing ground.
- The project will attempt to eliminate the existing storm drain system that outfalls into ARRC ROW. It may be challenging to extend a proposed storm drain from the existing low point to Arctic Boulevard.

D. Design Criteria & Proposed Design

1. <u>Roadway Design Criteria</u>

The MOA Design Criteria Manual (DCM) requires roadway improvements to be centered in the ROW; the existing roadway improvements are generally centered in the ROW. It is anticipated that the overall proposed footprint of the roadway will also be centered in the ROW, this will be confirmed during the development of the DSM.

The design criteria values from the DCM for an urban secondary (local) roadway typical section are summarized in <u>TABLE 5</u> below. Typical sections alternatives are discussed in the following section.

AADT	Street Number Width ¹ Moving	of Lanes Shoulder	Curb & Gutter	Pedestrian	Design Speed		
		Moving	Parking ²	Width	Type facilities ⁴	(mph)	
0-300	31'	2 – 10'	1 – 7′	3.5'	Type 2 ³ (rolled)	5-foot wide, both sides	25

1. Street width is measured from back of curb to back of curb.

2. When off street parking is utilized, the parking lane may be eliminated and the street width reduced. Minimum 3.5' shoulder sections are required if parking is eliminated.

3. Anchorage Municipal Code 21.08.050.G requires the use of Type 1 (vertical) curb and gutter.

 Anchorage Municipal Code 21.07.060.E.2 also requires sidewalks to be installed on both sides of all streets in Class A zoning districts. The project area falls under Class A per 21.08.050.B, Table 21.08-1.

2. <u>Typical Cross Section Alternatives</u>

Two typical cross section alternatives will be analyzed in detail during the DSM phase for grading, access, drainage, lighting and other improvements. The proposed typical section alternatives were reviewed and discussed at the meeting with MOA PM&E, Traffic Engineering, and Street Maintenance and are shown in <u>FIGURE 2</u> at end of this technical memorandum.

The typical sections aim to balance the context of the roadways with design criteria, driveway allowances and standards, and on-street parking demands. Each typical section includes pedestrian facilities. The typical sections will be presented to the public during the first open house of the project to gather comments and feedback while assembling the DSM.

3. <u>Roadway Profile</u>

The proposed vertical profile geometry will likely require forced high and low spots to increase the roadway grades to provide adequate drainage. The forced high and low spots will improve drainage but be located to minimize impacts to existing development. The vertical profile will be further analyzed and refined in the DSM and design phases.

4. Traffic Calming

Based upon the 85th percentile speeds from the traffic study, no traffic calming will be proposed for this project.

E. Proposed Storm Drainage

A full drainage analysis and preliminary storm drain design will be included in the DSM.

June 29, 2021 Norann Subdivision Area Road Reconstruction (PM&E #20-14) Draft Technical Memorandum

F. Design Variances

Design variances will be required from MOA Traffic Engineering & the Municipal Engineer for those items which do not adhere to the DCM or Title 21. Design variances are anticipated for:

- Curb type: Type 1 curb and gutter is proposed for the sections (DCM requires Type 2).
- Driveway widths: some proposed driveway widths if approved by MOA Traffic Engineering may be allowed to exceed the maximum allowable widths.
- Driveway landings: some proposed driveways may not be able to provide landings to meet the DCM.
- Depending on the typical section chosen if only one sidewalk is installed a design variance would be required since sidewalks are required on both sides of the roadway per the DCM and Title 21.

G. Cost Estimate

A cost estimate for each alternative will be prepared for the DSM.

H. Summary and Next Steps

Review comments received from MOA PM&E, Traffic Engineering, and Street Maintenance on this Draft Technical Memorandum will be incorporated into the Final Technical Memorandum. The Draft DSM will be prepared based upon the support from MOA PM&E, Traffic Engineering, and Street Maintenance of the proposed typical sections. The DSM will analyze the proposed typical section alternatives further and include recommended improvements.

Ę 60.0' ROW 51.0' J: \JobsData\10149.00 Norann Subdivision Road Reconstruction\00 CADD 2019\02 Figures\01 DSR\01 Typical Section Options\10149 Norann Typical Sections.dwg 5.0' BUFFER WHERE 5.0' BUFFER WHERE 5.0' 5.0' SIDEWALK REQ'D 31.0' REQ'D SIDEWALK TYPE 1 CURB & GUTTER, TYP 7.0' 10.0' LANE PARKING LANE 10.0' LANE 32.0' EXISTING ROAD WIDTH (W. 57TH & W. 58TH AVE) ALTERNATIVE 1 OPTION 1 FEATURES: PER DCM REQUIREMENTS 10 FOOT LANES SIDEWALKS ON EACH SIDE OF THE ROAD ONE, 7' PARKING LANE (LOCATION VARIES) NO ROADWAY MARKINGS . q 60.0' ROW 41.0' 5.0' BUFFER WHERE 5.0' 31.0' REQ'D SIDEWALK TYPE 1 CURB & GUTTER, TYP 7.0' PARKING LANE 10.0' LANE 10.0' LANE 5.0' 32.0' EXISTING ROAD WIDTH (W. 57TH & W. 58TH AVE) OPTION 2 FEATURES: • 10 FOOT LANES • SIDEWALK ON ONE SIDE OF THE ROAD • ONE, 7' PARKING LANE (LOCATION VARIES) • NO ROADWAY MARKINGS ALTERNATIVE 2 STUPNITY OF ANOTOR Project No: 10149.00 NORANN SUBDIVISION AREA ROAD RECONSTRUCTION RWB Drawn By: FILE NAME: ENGINEERING GROUP, LLC PM&E PROJECT NO. 20-14 Scale: NTS 3940 ARCTIC BLVD. SUITE 300 ANCHORAGE, ALASKA 99503 PHONE: (907) 562-3252 #AECL882-AK TYPICAL SECTION ALTERNATIVES JUNE 2021 Date: 2 Figure: